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Recap: Scalability of Server-Only 
Approaches
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Server+Host (P2P) Content 
Distribution: Key Design Issues
r Robustness

m Resistant to churns and 
failures

r Efficiency
m A client has content that 

others need; otherwise, its 
upload capacity may not be 
utilized

r Incentive: clients are willing 
to upload
m Some real systems nearly 

50% of all responses are 
returned by the top 1% of 
sharing hosts
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System State
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Q: How long does each downloader stay as a downloader?

l

Key take-
away: not 
scaling inverse 
with system 
size (x)
• New requests

comes, new
bandwidth also
comes



Recap

q Applications
q Client-server applications

- Single server 
- Multiple servers load balancing

q Application overlays (distributed network
applications) to
- scale bandwidth/resource (BitTorrent)
- distribute content lookup (Freenet, DHT, Chord)

[optional]
- distribute content verification (Block chain) [optional]
- achieve anonymity (Tor)

[optional]
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Overview

q Provide logical communication
between app’ processes

q Transport protocols run in 
end systems
o send side: breaks app 

messages into segments, 
passes to network layer

o rcv side: reassembles 
segments into messages, 
passes to app layer

q Transport vs. network layer 
services:
o Network layer: data transfer 

between end systems
o Transport layer: data 

transfer between processes
• relies on, enhances network 

layer services 
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Transport Layer Services and Protocols

q Reliable, in-order delivery (TCP)
o multiplexing
o reliability and connection setup
o congestion control 
o flow control

q Unreliable, unordered delivery: UDP
o multiplexing

q Services not available: 
o delay guarantees
o bandwidth guarantees
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Transport Layer: Road Ahead
q Class 1 (today):

o transport layer services 
o connectionless transport: UDP
o reliable data transfer using stop-and-wait/alternating-bit protocol

q Class 2 (ready for lab assignment 4/part 1):
o sliding window reliability
o TCP reliability

• overview of TCP
• TCP RTT measurement
• TCP connection management

q Class 3 (ready for lab assignment 4/part 2 [optional]):
o principles of congestion control
o TCP congestion control; AIMD; TCP Reno

q Class 4:
o TCP Vegas, performance modeling; Nash Bargaining solution

q Class 5:
o primal-dual as a resource allocation and analysis framework

q …
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UDP: User Datagram Protocol [RFC 768]

qOften used for 
streaming 
multimedia 
apps
o loss tolerant
o rate sensitive

qOther UDP 
uses
o DNS
o SNMP

source port # dest port #
32 bits

Application
data 
(message)

UDP segment format

length checksum
Length, in

bytes of 
UDP

segment,
including

header
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UDP Checksum

Sender:
q treat segment contents as 

sequence of 16-bit integers

q checksum: addition of 
segment contents to be 
zero

q sender puts checksum 
value into UDP checksum 
field

Receiver:
q compute sum of segment and 

checksum; check if sum zero
o NO - error detected
o YES - no error detected. 

But maybe errors 
nonetheless?

Goal: end-to-end detection of “errors” (e.g., flipped 
bits) in transmitted segment
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One’s Complement Arithmetic
q UDP checksum is based on one’s complement 

arithmetic
o one’s complement was a common representation of 

signed numbers in early computers
q One’s complement representation

o bit-wise NOT for negative numbers
o example: assume 8 bits

• 00000000: 0
• 00000001: 1
• 01111111: 127 
• 10000000: ?
• 11111111: ?

o addition:  conventional binary addition except adding any 
resulting carry back into the resulting sum

• Example: -1 + 2 14



UDP Checksum: Algorithm

r Example checksum:

1 1  1  1  0  0  1  1  0  0  1  1  0  0  1  1  0
1 1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1

1  1  0  1  1  1  0  1  1  1  0  1  1  1  0  1  1

1 1  0  1  1  1  0  1  1  1  0  1  1  1  1  0  0
0  1  0  0  0  1  0  0  0  1  0  0  0  0  1  1

wraparound

sum
checksum

- For fast implementation of computing UDP 
checksum, see http://www.faqs.org/rfcs/rfc1071.html
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UDP Checksum: Coverage

Calculated over:
q A pseudo-header

o IP Source Address 
(4 bytes) 

o IP Destination Address 
(4 bytes) 

o Protocol (2 bytes) 
o UDP Length (2 bytes)

q UDP header

q UDP data
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General Error Detection (Checksum)

D    = Data protected by error checking, may include header fields
ED = Error Detection bits (redundancy)

• Error detection not 100% reliable!
• a good error detector may miss some errors, but rarely
• larger ED field generally yields better detection

‘
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Cyclic Redundancy Check: Background
q Widely used in practice, e.g.,

o Ethernet, DOCSIS (Cable Modem), FDDI, 
PKZIP, WinZip, PNG

q For a given data D, consider it as a 
polynomial D(x) 
o consider the string of 0 and 1 as the 

coefficients of a polynomial
• e.g. consider string 10011 as x4+x+1

o addition and subtraction are modular 2, thus 
the same as xor

q Choose generator polynomial G(x) with r+1 
bits, where r is called the degree of G(x)
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Cyclic Redundancy Check: Encode
q Given data G(x) and D(x), choose R(x) with 

r bits, such that
o D(x)xr+R(x) is exactly divisible by G(x)

q The bits correspond to D(x)xr+R(x) are 
sent to the receiver

+x
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Cyclic Redundancy Check: Decode

q Since G(x) is global, when the receiver 
receives the transmission T’(x), it divides 
T’(x) by G(x)
o if non-zero remainder: error detected!
o if zero remainder, assumes no error

Encode:
CRC(G)

D
T = D(x)xr+R(x) T’

check
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CRC: Steps and an Example

Suppose the degree of G(x) 
is r

Append r zero to D(x), i.e. 
consider D(x)xr

Divide D(x)xr by G(x). Let 
R(x) denote the 
reminder

Send <D, R> to the receiver
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The Power of CRC
q Let T(x) denote D(x)xr+R(x), and E(x) the polynomial of the 

error bits
o the received signal is T’(x) = T(x)+E(x)

q Since T(x) is divisible by G(x), we only need to consider if E(x) 
is divisible by G(x)

Encode:
CRC(G)

D
T = D(x)xr+R(x) T’

check
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The Power of CRC

q Detect a single-bit error: E(x) = xi

o if G(x) contains two or more terms, E(x) is not divisible by 
G(x)

q Detect an odd number of errors: E(x) has an 
odd number of terms:
o lemma: if E(x) has an odd number of terms, E(x) cannot be 

divisible by (x+1)
• suppose E(x) = (x+1)F(x), let x=1, the left hand will be 1, while the right 

hand will be 0
o thus if G(x) contains x+1 as a factor, E(x) will not be divided 

by G(x)

q Many more errors can be detected by designing the 
right G(x)
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Example G(x)
q 16 bits CRC:

o CRC-16: x16+x15+x2+1, 
CRC-CCITT: x16+x12+x5+1

o both can catch 
• all single or double bit errors
• all odd number of bit errors
• all burst errors of length 16 

or less
• >99.99% of the 17 or 18 bits 

burst errors
CRC-16 hardware implementation

Using shift and XOR registers

http://en.wikipedia.org/wiki/CRC-32#Implementation
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Example G(x)
q 32 bits CRC: 

o CRC32: x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5

+ x4 + x2 + x + 1
o used by Ethernet, FDDI, PKZIP, WinZip, and PNG

q GSM phones

q For more details see the link below and further links it 
contains: 
o http://en.wikipedia.org/wiki/Cyclic_redundancy_check

. 
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Principles of Reliable Data 
Transfer (RDT)
q Important in app., transport, link layers
q Foundation to other protocols
q We use the development of RDT to also better 

appreciate understanding distributed protocols



Reliable Data Transfer
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Reliable Data Transfer: Getting 
Started

send
side

receive
side

rdt_send(): called from above, 
(e.g., by app.)

udt_send(): called by rdt,
to transfer packet over 
unreliable channel to receiver

rdt_rcv(): called from below; 
when packet arrives on rcv-side of 
channel

deliver_data(): called by 
rdt to deliver data to upper
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Reliable Data Transfer: Getting 
Started
We’ll:
q incrementally develop sender, receiver sides of 

reliable data transfer protocol (rdt)
q consider only unidirectional data transfer

o but control info will flow on both directions !
q use finite state machines (FSM) to specify 

sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this 
“state” next state 

uniquely determined 
by next event

event
actions
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Rdt1.0: reliable transfer over a reliable channel

q separate FSMs for sender, receiver:
o sender sends data into underlying channel
o receiver reads data from underlying channel

Wait for 
call from 
above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

sender

extract (packet,data)
deliver_data(data)

Wait for 
call from 
below

rdt_rcv(packet)

receiver

Exercise: Prove correctness of Rdt1.0.

Correctness: for every single packet, one and only one copy is
received by receiver correctly (no error) and in-order
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Potential Channel Errors

qbit errors

qloss (drop) of packets

qreordering or duplication

Characteristics of unreliable channel will determine complexity of 
reliable data transfer protocol (rdt).


