
Network Transport Layer:
Overview; UDP; Stop-and-Wait ARQ

Qiao Xiang, Congming Gao

https://sngroup.org.cn/courses/cnns-
xmuf24/index.shtml

10/31/2024

This deck of slides are heavily based on CPSC 433/533 at Yale University, by courtesy of Dr. Y. Richard Yang.

Outline

q Admin and recap
q Overview of transport layer
q UDP
q Reliable data transfer, the stop-and-go

protocols

2

Recap: Scalability of Server-Only
Approaches

3

edge.
servers

C0

client 1

client 2

client 3

client n

DNS

origin

Server+Host (P2P) Content
Distribution: Key Design Issues
r Robustness

m Resistant to churns and
failures

r Efficiency
m A client has content that

others need; otherwise, its
upload capacity may not be
utilized

r Incentive: clients are willing
to upload
m Some real systems nearly

50% of all responses are
returned by the top 1% of
sharing hosts

4

servers

C0

client 1

client 2

client 3

client n

C1

C2
C3

Cn

System State

5

Q: How long does each downloader stay as a downloader?

l

Key take-
away: not
scaling inverse
with system
size (x)
• New requests

comes, new
bandwidth also
comes

Recap

q Applications
q Client-server applications

- Single server
- Multiple servers load balancing

q Application overlays (distributed network
applications) to
- scale bandwidth/resource (BitTorrent)
- distribute content lookup (Freenet, DHT, Chord)

[optional]
- distribute content verification (Block chain) [optional]
- achieve anonymity (Tor)

[optional]

6

Outline

q Admin and recap
Ø Overview of transport layer
q UDP
q Reliable data transfer, the stop-and-go

protocols

7

8

Overview

q Provide logical communication
between app’ processes

q Transport protocols run in
end systems
o send side: breaks app

messages into segments,
passes to network layer

o rcv side: reassembles
segments into messages,
passes to app layer

q Transport vs. network layer
services:
o Network layer: data transfer

between end systems
o Transport layer: data

transfer between processes
• relies on, enhances network

layer services

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

9

Transport Layer Services and Protocols

q Reliable, in-order delivery (TCP)
o multiplexing
o reliability and connection setup
o congestion control
o flow control

q Unreliable, unordered delivery: UDP
o multiplexing

q Services not available:
o delay guarantees
o bandwidth guarantees

10

Transport Layer: Road Ahead
q Class 1 (today):

o transport layer services
o connectionless transport: UDP
o reliable data transfer using stop-and-wait/alternating-bit protocol

q Class 2 (ready for lab assignment 4/part 1):
o sliding window reliability
o TCP reliability

• overview of TCP
• TCP RTT measurement
• TCP connection management

q Class 3 (ready for lab assignment 4/part 2 [optional]):
o principles of congestion control
o TCP congestion control; AIMD; TCP Reno

q Class 4:
o TCP Vegas, performance modeling; Nash Bargaining solution

q Class 5:
o primal-dual as a resource allocation and analysis framework

q …

Outline

q Admin and recap
q Overview of transport layer
Ø UDP and error checking
q Reliable data transfer, the stop-and-go

protocols

11

UDP: User Datagram Protocol [RFC 768]

qOften used for
streaming
multimedia
apps
o loss tolerant
o rate sensitive

qOther UDP
uses
o DNS
o SNMP

source port # dest port #
32 bits

Application
data
(message)

UDP segment format

length checksum
Length, in

bytes of
UDP

segment,
including

header

12

UDP Checksum

Sender:
q treat segment contents as

sequence of 16-bit integers

q checksum: addition of
segment contents to be
zero

q sender puts checksum
value into UDP checksum
field

Receiver:
q compute sum of segment and

checksum; check if sum zero
o NO - error detected
o YES - no error detected.

But maybe errors
nonetheless?

Goal: end-to-end detection of “errors” (e.g., flipped
bits) in transmitted segment

13

One’s Complement Arithmetic
q UDP checksum is based on one’s complement

arithmetic
o one’s complement was a common representation of

signed numbers in early computers
q One’s complement representation

o bit-wise NOT for negative numbers
o example: assume 8 bits

• 00000000: 0
• 00000001: 1
• 01111111: 127
• 10000000: ?
• 11111111: ?

o addition: conventional binary addition except adding any
resulting carry back into the resulting sum

• Example: -1 + 2 14

UDP Checksum: Algorithm

r Example checksum:

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

- For fast implementation of computing UDP
checksum, see http://www.faqs.org/rfcs/rfc1071.html

15

UDP Checksum: Coverage

Calculated over:
q A pseudo-header

o IP Source Address
(4 bytes)

o IP Destination Address
(4 bytes)

o Protocol (2 bytes)
o UDP Length (2 bytes)

q UDP header

q UDP data

16

17

General Error Detection (Checksum)

D = Data protected by error checking, may include header fields
ED = Error Detection bits (redundancy)

• Error detection not 100% reliable!
• a good error detector may miss some errors, but rarely
• larger ED field generally yields better detection

‘

18

Cyclic Redundancy Check: Background
q Widely used in practice, e.g.,

o Ethernet, DOCSIS (Cable Modem), FDDI,
PKZIP, WinZip, PNG

q For a given data D, consider it as a
polynomial D(x)
o consider the string of 0 and 1 as the

coefficients of a polynomial
• e.g. consider string 10011 as x4+x+1

o addition and subtraction are modular 2, thus
the same as xor

q Choose generator polynomial G(x) with r+1
bits, where r is called the degree of G(x)

19

Cyclic Redundancy Check: Encode
q Given data G(x) and D(x), choose R(x) with

r bits, such that
o D(x)xr+R(x) is exactly divisible by G(x)

q The bits correspond to D(x)xr+R(x) are
sent to the receiver

+x

20

Cyclic Redundancy Check: Decode

q Since G(x) is global, when the receiver
receives the transmission T’(x), it divides
T’(x) by G(x)
o if non-zero remainder: error detected!
o if zero remainder, assumes no error

Encode:
CRC(G)

D
T = D(x)xr+R(x) T’

check

21

CRC: Steps and an Example

Suppose the degree of G(x)
is r

Append r zero to D(x), i.e.
consider D(x)xr

Divide D(x)xr by G(x). Let
R(x) denote the
reminder

Send <D, R> to the receiver

22

The Power of CRC
q Let T(x) denote D(x)xr+R(x), and E(x) the polynomial of the

error bits
o the received signal is T’(x) = T(x)+E(x)

q Since T(x) is divisible by G(x), we only need to consider if E(x)
is divisible by G(x)

Encode:
CRC(G)

D
T = D(x)xr+R(x) T’

check

23

The Power of CRC

q Detect a single-bit error: E(x) = xi

o if G(x) contains two or more terms, E(x) is not divisible by
G(x)

q Detect an odd number of errors: E(x) has an
odd number of terms:
o lemma: if E(x) has an odd number of terms, E(x) cannot be

divisible by (x+1)
• suppose E(x) = (x+1)F(x), let x=1, the left hand will be 1, while the right

hand will be 0
o thus if G(x) contains x+1 as a factor, E(x) will not be divided

by G(x)

q Many more errors can be detected by designing the
right G(x)

24

Example G(x)
q 16 bits CRC:

o CRC-16: x16+x15+x2+1,
CRC-CCITT: x16+x12+x5+1

o both can catch
• all single or double bit errors
• all odd number of bit errors
• all burst errors of length 16

or less
• >99.99% of the 17 or 18 bits

burst errors
CRC-16 hardware implementation

Using shift and XOR registers

http://en.wikipedia.org/wiki/CRC-32#Implementation

25

Example G(x)
q 32 bits CRC:

o CRC32: x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5

+ x4 + x2 + x + 1
o used by Ethernet, FDDI, PKZIP, WinZip, and PNG

q GSM phones

q For more details see the link below and further links it
contains:
o http://en.wikipedia.org/wiki/Cyclic_redundancy_check

.

Outline

q Admin and recap
q Transport overview
q UDP
Ø Reliable data transfer

26

27

Principles of Reliable Data
Transfer (RDT)
q Important in app., transport, link layers
q Foundation to other protocols
q We use the development of RDT to also better

appreciate understanding distributed protocols

Reliable Data Transfer

28

29

Reliable Data Transfer: Getting
Started

send
side

receive
side

rdt_send(): called from above,
(e.g., by app.)

udt_send(): called by rdt,
to transfer packet over
unreliable channel to receiver

rdt_rcv(): called from below;
when packet arrives on rcv-side of
channel

deliver_data(): called by
rdt to deliver data to upper

30

Reliable Data Transfer: Getting
Started
We’ll:
q incrementally develop sender, receiver sides of

reliable data transfer protocol (rdt)
q consider only unidirectional data transfer

o but control info will flow on both directions !
q use finite state machines (FSM) to specify

sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this
“state” next state

uniquely determined
by next event

event
actions

Outline

q Admin and review
q Overview of transport layer
q UDP and error checking
q Reliable data transfer

Ø perfect channel

31

32

Rdt1.0: reliable transfer over a reliable channel

q separate FSMs for sender, receiver:
o sender sends data into underlying channel
o receiver reads data from underlying channel

Wait for
call from
above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

sender

extract (packet,data)
deliver_data(data)

Wait for
call from
below

rdt_rcv(packet)

receiver

Exercise: Prove correctness of Rdt1.0.

Correctness: for every single packet, one and only one copy is
received by receiver correctly (no error) and in-order

33

Potential Channel Errors

qbit errors

qloss (drop) of packets

qreordering or duplication

Characteristics of unreliable channel will determine complexity of
reliable data transfer protocol (rdt).

