Network Applications:
HTTP/1.1/2; Operational Analysis

Qiao Xiang, Congming Gao, Qiang Su

https://sngroup.org.cn/courses/chnns-
xmuf25/index.shtml

10/09/2025

This deck of slides are heavily based on CPSC 433/533 at Yale University, by courtesy of Dr. Y. Richard Yang.

Qutline

a Admin and recap
AHTTP

o HTTP "acceleration”
o Operational analysis

Admin

A Lab assignment 2 due Oct. 14
A Lab assignment 3 to be posted

Qutline

a Admin and recap
AHTTP/1.0
> HTTP "acceleration”

Recap: Substantial Efforts to Speedup Basic

HTTP/1.0

a

4
4

(.

(.

Reduce the number of objects fetched [Browser cache]

Reduce data volume [Compression of data]
Header compression [HTTP/2]

Reduce the latency to the server to fetch the content [Proxy cache]

Remove the extra RTTs to fetch an object [Persistent HTTP, aka
HTTP/1.1]

Increase concurrency [Multiple TCP connections]
Asynchronous fetch (multiple streams) using a single TCP [HTTP/2]

& K

Server push [HTTP/2] & & &
D O D

Browser Cache and Conditional GET

client server

QO Goal: don’ t send object if
client has up-to-date stored
(cached) version

Q client: specify date of
cached copy in http request
If-modified-since:
<date>
O server: response contains
no object if cached copy up-
to-date:
HTTP/1.0 304 Not
Modified

object
hot
modified

object
modified

Web Caches (Proxy)

Goal: satisfy client request without involving origin server

origin
server

Proxy
@ htg . server
: S
client N
A>pes
Po

/75'e

client

origin
server

Two Types of Proxies

http://www.celinio.net/techblog/?p=1027

(FORWARD) PROXY server

INTERNET http://domain.com

REVERSE-PROXY server

INTERNET http://domain.com

Server 1 Server 2

Server 3

HTTP
request

Typically
in the same
network as
the client

HTTP
request

Proxy|Server

HTTP
request

Firewall

Cache for static data
Filter

e Access control

The proxy is in the
same network as
the client

Servew1 Serv r2 « Server3
HTTP request HTTP i
http://domain.com:7777 reques

HTTP request http://domain.com:7777

http://domain.com:7777

HTTP FII‘FWG”

request
e Load-balancing
e Filter
e Cache for static
data

Reverse- prox server
ATTP The reverse-pro
request . proxy
is in the same
network as the
server

Firewall

|

]

[ypically in

the same
network as
the server

ENTERPRISE / SCHOOL / INTRANET ...

HTTP request
http /Idomain.com:80

Benefits of Forward Proxy

Assume: cache is “close”

to client (e.g., in same
hetwork)

0 smaller response time:

cache “closer” to
client

Qd decrease traffic to
distant servers
o link out of
institutional/local ISP

network often is
bottleneck

@ origin
@ servers

public

Internet @

&S

1.5 Mbps
access link

institutional
network &2 Mbps LAN

YYTY
institutional
cache

No Free Lunch: Problems of Web Caching

0 The major issue of web caching is how to
maintain consistency

a Two ways
0 PU”

+ Web caches periodically pull the web server to see if

a document is modified
o PUSh
- whenever a server gives a copy of a web page to a web
cache, they sign a lease with an expiration time; if the

web page is modified before the lease, the server
notifies the cache

10

HTTP/1.1: Persistent (keepalive/pipelining) HTTP

A HTTP/1.0 allows a single request
outstanding, while HTTP/1.1 allows request
pipelining

o On same TCP connection: server parses
request, responds, parses new request, ...

o Client sends requests for all referenced
objects as soon as it receives base HTML

0 Benefit
o Fewer RTTs

o See Joshua Graessley WWDC 2012 talk: 3x
within iTunes

11

HTTP/1.0, Keep-Alive, Pipelining

TCP connection #1, Request #1-2: HTML + (SS

TCP connection #1, Request #1: HTML request

Client

SYN \’ 0ms =
o
28ms { SYN ACK ' o
(=)}
ACK | soms 3
GET /html \k
84ms =
=
=
server processing: 40 ms l '
K
124ms /]' HTML response ' 2
| close connection } 152 ms
v v
TCP connection #2, Request #2: (SS request
Client Server
SYN \ 0ms =
28ms { SYN ACK ' g
| ACK 4—————/ 3
GET /css \.ﬁ o
84ms g
server processing: 20 ms i 'f’
104ms //_ { (SS response ' g
| close connection = 132ms
v

SYN

ACK
GET /html

3

GET /css

;

close connection

|

SYN

Client Server

3

\»

oms

28ms

‘/—
. \k

server processing: 40 ms l

56ms

124ms

P——
\»

server processing: 20 ms

180ms

152ms

HTML response

200ms

P—

v v

Client

ACK

Server

{ (SS response |

228ms

28ms //

GET /html
GET /css

124 ms

server processing: 40 + 20 ms

close connection

U

,, l

-1 HTML response
-1 (SSresponse

|

Swz/l -dlH

172ms

L

swo9g

———

swog -diL

SWoLL- d1LH

Y Source: http://chimera.labs.oreilly.com/books/1230000000545/ch11.html 12

HTTP/2 Basic Idea:
Remove Head-of-Line Blocking in HTTP/1.1

(Client Server

SYN

Sw9s ddl

GET /html
GET /css

SW 96 d11H

HTML response
(SS response

dose Connectlon ... 152 ms

v
Demo: https://http2.akamai.com/demo
Source: http.//chimera.labs.oreilly.com/books/1230000000545/chll.html 13

Observing HTTP/2

ad export SSLKEYLOGFILE=/tmp/keylog.txt

A Start Chrome, e.g.,

o Mac: /Applications/Google
Chrome.app/Contents/MacOS/Google Chrome

o Ubuntu: firefox

A Visit HTTP/2 pages, such as
https://www.tmall.com

A Wireshark:
o Mac: Wireshark -> preferences -> protocol -> TSL
(pre)-master-secret log file name
o Ubuntu: edit -> perferences -> protocol -> SSL
(pre)-master-secret log file name

14

https://www.tmall.com/

HTTP/2 Design: Multi-Streams

HTTP/2 connection
- | stream1 | stream3 | stream3 | stream 1
DATA | HEADERS DATA DATA
- .. stream 5
DATA
Client
Bit +0..7 +8..15 +16..23 +24..31
o Length Type
32 Flags
40 | R Stream Identifier
Frame Payload

HTTP/2 Binary Framing

https://hpbn.co/http2/ https://tools.ietf.org/html/rfc7540 15

HTTP/2 Header Compression

Encoded headers

2

7

63

19

Huffman(“/resource”)

Request headers
:method GET
:scheme https
:host | example.com
‘path /resource
user-agent | Mozilla/5.0 ...
custom-hdr | some-value

62

Static table

1 -authority

2 :method GET
51 referer

62 | user-agent | Mozilla/5.0 ...
63 ‘host [example.com

Huffman(“custom-hdr”)

Huffman(“some-value”)

Dynamic table

16

HTTP/2 Stream Dependency and Weights

*
*

implicit root : *

p

J
stream [A B
weight 12 4

© =€ =0 <<
0o)ewe—-=0)]---
—

17

HTTP/2 Server Push

HTTP/2 connection

| stream4 stteam1 | stream4 | stream2 |
DATA | HEADERS | PUSH_PROMISE | PUSH_PROMISE
Y — U
DATA

stream 1
HEADERS

stream 1: /page.html (client request)

stream 2: /script.js (push promise)
stream 4: /style.css (push promise)

18

Qutline

a Admin and recap
AQHTTP

o HTTP "acceleration”
o Operational analysis

19

Goal: Best Server Design Limited Only
by Resource Bottleneck

DISK mammmmms e A DS - S Before
NET = = = .

CPU - - : |
DISK s S s— After
NET O 0 n O

Some Questions

d When is CPU the bottleneck for
scalability?
o So that we need to add helper threads

a How do we know that we are reaching the
limit of scalability of a single machine?

A These questions drive network server
architecture design

0 Some basic performance analysis
techniques gre good to have

Background: Little's Law (1961)

A For any system with no
or (low) loss. \ R, Q
d Assume

o mean arrival rate A, mean time R
at system, and mean nhumber Q of requests at
system

a Then relationship between Q, A, and R:
O = AR

Example: XMU admits 3000 students each year, and mean time a
student stays is 4 years, how many students are enrolled?

22

Little’ s Law: Proof

arrival

A

O = AR

t
time
— 4 _ Areat _ Area
A t R = A -t

Operational Analysis

a Relationships that do not require any
assumptions about the distribution of service
times or inter-arrival times

o Hence focus onh measurements

A Identified originally by Buzen (1976) and
later extended by Denning and Buzen (1978).

a We touch only some techniques/results
o In particular, bottleneck analysis

0 More details, see linked reading

Under the Hood (An example FSM)

N

start (arrival rate A)

network

exit
(throughput X until some
center saturates)

C

CPU

File I/O

I/O request

_Q

A

O

Memory cache

2R

Operational Analysis: Resource

Demand of a Request

CPU
Q Vpy Visits for Sgpy units of resource time per visit

Network

Q Vet Visits for Syt units of resource time per visit
Disk

Q Vpisk Visits for Sy units of resource time per visit
Memory

Q Vem Visits for Sy, UNits of resource time per visit
26

Operational Quantities

Q T: observation interval Ai. # arrivals to device i
QO Bi: busy time of device i Ci: # completions at device i
QO i =0 denotes system
Ai
arrival rate A
T
Cz
Throughput X, =—-
Bz
Utilization U, = —

Mean service time S, = =

27

Utilization Law

B.
Utilization U, = —

T

. C B
T C

— XS,

O The law is independent of any assumption on arrival/service
process

O Example: Suppose NIC processes 125 pkts/sec, and each pkt
takes 2 ms. What is utilization of the network NIC?

~,

28

Deriving Relationship Between
R, U,and S for one Device

O Assume flow balanced (arrival=throughput), Little's Law:

O Assume PASTA (Poisson arrival--memory-less arrival--sees
time average), a hew request sees Q ahead of it, and FIFO

R=§+05=5+XRS

O According to utilization law, U = XS

1-U

29

Forced Flow Law

0 Assume each request visits device i Vi
times

C

Throughput X, =—

_ G G

l

—C, T

:ViX

30

Bottleneck Device

Utilization U, = XS’
=V, X5,
= XV.5,

ad Define Di = Vi Si as the total demand of a request
on device i

d The device with the highest Di has the highest
utilization, and thus is called the bottleneck

31

Bottleneck vs System Throughput

Utilization U, = XV.§,; <1

32

