
Network Applications:
High-performance Server Design

This deck of slides are heavily based on CPSC 433/533 at Yale University, by courtesy of Dr. Y. Richard Yang.

Qiao Xiang, Congming Gao, Qiang Su

https://sngroup.org.cn/courses/cnns-
xmuf25/index.shtml

10/14/2025

2

Outline

❑Admin and recap

❑High-performance network server design
o Overview

o Threaded servers
• Per-request thread

– problem: large # of threads and their creations/deletions

may let overhead grow out of control

• Thread pool

– Design 1: Service threads compete on the welcome socket

– Design 2: Service threads and the main thread coordinate

on the shared queue

»polling (busy wait)

»suspension: wait/notify

Admin

❑ Lab Assignment Three
o Due on Oct. 29

3

4

Recap: Latency of Basic HTTP/1.0

❑ >= 2 RTTs per object:
o TCP handshake --- 1 RTT

o client request and server
responds --- at least 1 RTT
(if object can be contained
in one packet)

5

Recap: Substantial Efforts to Speedup HTTP/1.0

❑ Reduce the number of objects fetched [Browser cache]

❑ Reduce data volume [Compression of data]

❑ Header compression [HTTP/2]

❑ Reduce the latency to the server to fetch the content [Proxy cache]

❑ Remove the extra RTTs to fetch an object [Persistent HTTP, aka
HTTP/1.1]

❑ Increase concurrency [Multiple TCP connections]

❑ Asynchronous fetch (multiple streams) using a single TCP [HTTP/2]

❑ Server push [HTTP/2]

WebServer Implementation

TCP socket space

state: listening
address: {*.6789, *.*}
completed connection queue:
sendbuf:
recvbuf:

128.36.232.5
128.36.230.2

state: listening
address: {*.25, *.*}
completed connection queue:
sendbuf:
recvbuf:

state: established
address: {128.36.232.5:6789, 198.69.10.10.1500}
sendbuf:
recvbuf:

connSocket = accept()

create

ServerSocket(6789)

write file to connSocket

close connSocket Discussion: what does each step do and
how long does it take?

read request from

connSocket

read local file

6

Demo

❑ Try TCPServer

❑ Start two TCPClient
o Client 1 starts early but stops

o Client 2 starts later but inputs first

7

Server Processing Steps

Accept Client

Connection

Read

Request

Find

File

Send

Response Header

Read File

Send Data

may block

waiting on

disk I/O

may block

waiting on

network

8

Writing High Performance
Servers: Major Issues

❑Many socket and IO operations can
cause a process to block, e.g.,
o accept: waiting for new connection;
o read a socket waiting for data or close;
o write a socket waiting for buffer space;
o I/O read/write for disk to finish

9

Goal: Limited Only by Resource Bottleneck

CPU

DISK Before

NET

CPU

DISK

NET

After

10

11

Outline

❑Admin and recap

❑Network server design
o Overview

➢ Multi-thread network servers

Multi-Threaded Servers

❑ Motivation:
o Avoid blocking the whole program

(so that we can reach bottleneck
throughput)

❑ Idea: introduce threads
o A thread is a sequence of

instructions which may execute
in parallel with other threads

o When a blocking operation
happens, only the flow (thread)
performing the operation is
blocked

12

Background: Java Thread Model

❑ Every Java application has at least one thread
o The “main” thread, started by the JVM to run the

application’s main() method

o Most JVMs use POSIX threads to implement Java
threads

❑ main() can create other threads
o Explicitly, using the Thread class

o Implicitly, by calling libraries that create threads as a
consequence (RMI, AWT/Swing, Applets, etc.)

13

Thread vs Process

14

Creating Java Thread

❑ Two ways to implement Java thread
1. Extend the Thread class

• Overwrite the run() method of the Thread class

2. Create a class C implementing the Runnable
interface, and create an object of type C,
then use a Thread object to wrap up C

❑A thread starts execution after its
start() method is called, which will start
executing the thread’s (or the Runnable
object’s) run() method

❑A thread terminates when the run()
method returns

16http://java.sun.com/javase/6/docs/api/java/lang/Thread.html

Option 1: Extending Java Thread

17

class PrimeThread extends Thread {

 long minPrime;

 PrimeThread(long minPrime) {

 this.minPrime = minPrime;

 }

 public void run() {

 // compute primes larger than minPrime . . .

 }

}

PrimeThread p = new PrimeThread(143);

p.start();

Option 1: Extending Java Thread

18

class RequestHandler extends Thread {

 RequestHandler(Socket connSocket) {

 // …

 }

 public void run() {

 // process request

 }

 …

}

Thread t = new RequestHandler(connSocket);

t.start();

Option 2: Implement the
Runnable Interface

19

class PrimeRun implements Runnable {

 long minPrime;

 PrimeRun(long minPrime) {

 this.minPrime = minPrime;

 }

 public void run() {

 // compute primes larger than minPrime . . .

 }

}

 PrimeRun p = new PrimeRun(143);

 new Thread(p).start();

Example: a Multi-threaded TCPServer

20

❑ Turn TCPServer into a multithreaded
server by creating a thread for each
accepted request

Per-Request Thread Server

21

main() {

 ServerSocket s = new ServerSocket(port);

 while (true) {

 Socket conSocket = s.accept();

 RequestHandler rh

 = new RequestHandler(conSocket);

 Thread t = new Thread (rh);

 t.start();

 }

Try the per-request-thread TCP server: TCPServerMT.java

main thread

thread starts

thread starts

thread

endsthread

ends

class RequestHandler implements Runnable {

 RequestHandler(Socket connSocket) { … }

 public void run() {

 //

 } }

Summary: Implementing Threads

22

class RequestHandler

 extends Thread {

 RequestHandler(Socket connSocket)

 {

 …

 }

 public void run() {

 // process request

 }

 …

}

Thread t = new RequestHandler(connSocket);

t.start();

class RequestHandler

 implements Runnable {

 RequestHandler(Socket connSocket)

 {

 …

 }

 public void run() {

 // process request

 }

 …

}

RequestHandler rh = new

 RequestHandler(connSocket);

Thread t = new Thread(rh);

t.start();

Modeling Per-Request Thread
Server: Theory

23

0 1 k N

p0 p1 pk

k+1

pk+1 pN

Welcome

Socket

Queue



(k+1)

Problem of Per-Request Thread: Reality

❑ High thread creation/deletion overhead

❑ Too many threads → resource overuse →
throughput meltdown → response time explosion
o Q: given avg response time and connection arrival rate,

how many threads active on avg? 24

25

Recall: Little’s Law (1961)

❑ For any system with no
or (low) loss.

❑Assume
o mean arrival rate , mean time R

at system, and mean number Q of requests at
system

❑ Then relationship between Q, , and R:

R, Q

RQ =
Example: XMU admits 3000 students each year, and mean time a

student stays is 4 years, how many students are enrolled?



Discussion: How to Address the Issue

26

27

Outline

❑Admin and recap

❑High-performance network server design
o Overview

o Threaded servers
• Per-request thread

– problem: large # of threads and their creations/deletions

may let overhead grow out of control

➢Thread pool

Using a Fixed Set of Threads
(Thread Pool)

❑Design issue: how to distribute the
requests from the welcome socket to the
thread workers

28

welcome

socket

Thread 1 Thread 2 Thread K

Design 1: Threads Share
Access to the welcomeSocket

29

WorkerThread {

 void run {

 while (true) {

 Socket myConnSock = welcomeSocket.accept();

 // process myConnSock

 myConnSock.close();

 } // end of while

}

welcome

socket

Thread 1 Thread 2 Thread K

sketch; not
working code

Design 2: Producer/Consumer

30

welcome

socket

Main

thread

Thread 2 Thread KThread 1

Q: Dispatch

queue

main {

 void run {

 while (true) {

 Socket con = welcomeSocket.accept();

 Q.add(con);

 } // end of while

}

WorkerThread {

 void run {

 while (true) {

 Socket myConnSock = Q.remove();

 // process myConnSock

 myConnSock.close();

 } // end of while

}

sketch; not
working code

Common Issues Facing Designs 1 and 2

❑ Both designs involve multiple threads
modifying the same data concurrently
o Design 1:

o Design 2:

❑ In our original TCPServerMT, do we have
multiple threads modifying the same data
concurrently?

31

welcomeSocket

Q

Concurrency and Shared Data

❑ Concurrency is easy if threads don’t
interact
o Each thread does its own thing, ignoring other

threads

o Typically, however, threads need to
communicate/coordinate with each other

o Communication/coordination among threads is
often done by shared data

32

Simple Example

public class ShareExample extends Thread {

 private static int cnt = 0; // shared state, count

 // total increases

 public void run() {

 int y = cnt;

 cnt = y + 1;

 }

 public static void main(String args[]) {

 Thread t1 = new ShareExample();

 Thread t2 = new ShareExample();

 t1.start();

 t2.start();

 Thread.sleep(1000);

 System.out.println(“cnt = “ + cnt);

 }

} 33Q: What is the result of the program?

Simple Example

What if we add a println:
 int y = cnt;

 System.out.println(“Calculating…”);

 cnt = y + 1;

34

What Happened?

❑A thread was preempted in the middle of
an operation

❑ The operations from reading to writing cnt
should be atomic with no interference
access to cnt from other threads

❑ But the scheduler interleaves threads and
caused a race condition

❑ Such bugs can be extremely hard to
reproduce, and also hard to debug

35

Synchronization

❑ Refers to mechanisms allowing a
programmer to control the execution order
of some operations across different
threads in a concurrent program.

❑We use Java as an example to see
synchronization mechanisms

❑We'll look at locks first.

36

Java Lock (1.5)

 Only one thread can hold a lock at once

 Other threads that try to acquire it block (or become
suspended) until the lock becomes available

 Reentrant lock can be reacquired by same thread
 As many times as desired

 No other thread may acquire a lock until it has been released the
same number of times that it has been acquired

 Do not worry about the reentrant perspective, consider it a lock

37

interface Lock {

 void lock();

 void unlock();

 ... /* Some more stuff, also */

}

class ReentrantLock implements Lock { ... }

Java Lock

❑ Fixing the ShareExample.java problem

38

import java.util.concurrent.locks.*;

public class ShareExample extends Thread {

 private static int cnt = 0;

 static Lock lock = new ReentrantLock();

 public void run() {

 lock.lock();

 int y = cnt;

 cnt = y + 1;

 lock.unlock();

 }

 …

}

Java Lock

❑ It is recommended to use the following
pattern

39

…

 lock.lock();

 try {

 // processing body

 } finally {

 lock.unlock();

 }

Java synchronized

 This pattern is really common
 Acquire lock, do something, release lock after we are

done, under any circumstances, even if exception was
raised, the method returned in the middle, etc.

 Java has a language construct for this
 synchronized (obj) { body }

 Utilize the design that every Java object has its own implicitly lock
object, also called the intrinsic lock, monitor lock or simply monitor

• Obtains the lock associated with obj

• Executes body

• Release lock when scope is exited

• Even in cases of exception or method return

40

Discussion

❑ An object and its associated lock are different !

❑ Holding the lock on an object does not affect what
you can do with that object in any way

❑ Examples:
o synchronized(o) { ... } // acquires lock named o

o o.f (); // someone else can call o’s methods

o o.x = 3; // someone else can read and write o’s fields

41

object o o’s lock

Synchronization on this

A program can often use this as the
object to lock

Does the program above have a data race?
No, both threads acquire locks on the same

object before they access shared data 42

class C {

 int cnt;

 void inc() {

 synchronized (this) {

 cnt++;

 } // end of sync

 } // end of inc

}

C c = new C();

Thread 1

c.inc();

Thread 2

c.inc();

Synchronization on this

 Does the program above have a data race?
 No, both threads acquire locks on the same object before they

access shared data 43

class C {

 static int cnt;

 void inc() {

 synchronized (this) {

 cnt++;

 } // end of sync

 } // end of inc

 void dec() {

 synchronized (this) {

 cnt--;

 } // end of sync

 } // end of dec

}

C c = new C();

Thread 1

c.inc();

Thread 2

c.dec();

Example

❑ See
o ShareWelcome/Server.java

o ShareWelcome/ServiceThread.java

44

Discussion

❑ You would not need the lock for accept if Java
were to label the call as thread safe
(synchronized)

❑ One reason Java does not specify accept as
thread safe is that one could register your own
socket implementation with
ServerSocket.setSocketFactory

❑ Always consider thread safety in your design
o If a resource is shared through concurrent read/write,

write/write), consider thread-safe issues.

45

http://java.sun.com/j2se/1.4.2/docs/api/java/net/ServerSocket.html#setSocketFactory%28java.net.SocketImplFactory%29

Why not Synchronization

❑Synchronized method invocations
generally are going to be slower than
non-synchronized method invocations

❑Synchronization gives rise to the
possibility of deadlock, a severe
performance problem in which your
program appears to hang

46

Synchronization Overhead

❑ Try SyncOverhead.java

47

Synchronization Overhead

❑ Try SyncOverhead.java

48

Method Time (ms; 5,000,000 exec)

no sync 8 ms

synchronized method 18 ms

synchronized on this 18 ms

lock 89 ms

lock and finally 88 ms

Design 2: Producer/Consumer

49

welcome

socket

Main

thread

Thread 2 Thread KThread 1

Q: Dispatch

queue

main {

 void run {

 while (true) {

 Socket con = welcomeSocket.accept();

 Q.add(con);

 } // end of while

}

WorkerThread {

 void run {

 while (true) {

 Socket myConnSock = Q.remove();

 // process myConnSock

 myConnSock.close();

 } // end of while

}

How to turn it into
working code?

Main

50

main {

 void run {

 while (true) {

 Socket con = welcomeSocket.accept();

 synchronized(Q) {

 Q.add(con);

 }

 } // end of while

}

main {

 void run {

 while (true) {

 Socket con = welcomeSocket.accept();

 Q.add(con);

 } // end of while

}

Worker

51

while (true) {

 // get next request

 Socket myConn = null;

 while (myConn==null) {

 synchronize(Q) {

 if (!Q.isEmpty())

 myConn = (Socket) Q.remove();

 }

 } // end of while

 // process myConn

}

WorkerThread {

 void run {

 while (true) {

 Socket myConnSock = Q.remove();

 // process myConnSock

 myConnSock.close();

 } // end of while

}

Example

❑ try
o ShareQ/Server.java

o ShareQ/ServiceThread.java

52

Problem of ShareQ Design

❑ Worker thread continually spins (busy wait) until a
condition holds

❑ Can lead to high utilization and slow response time

❑ Q: Does the shared welcomeSock have busy-wait?

53

while (true) { // spin

 lock;

 if (Q.condition) // {

 // do something

 } else {

 // do nothing

 }

 unlock

 } //end while

Solution: Suspension

❑ Put thread to sleep to avoid busy spin

❑ Thread life cycle: while a thread executes,
it goes through a number of different
phases
o New: created but not yet started

o Runnable: is running, or can run on a free CPU

o Blocked: waiting for socket/I/O, a lock, or
suspend (wait)

o Sleeping: paused for a user-specified interval

o Terminated: completed

54

Solution: Suspension

55

while (true) {

 // get next request

 Socket myConn = null;

 while (myConn==null) {

 lock Q;

 if (Q.isEmpty()) // {

 // stop and wait

 } else {

 // get myConn from Q

 }

 unlock Q;

 }

 // get the next request; process

}

Hold lock?

Solution: Suspension

56

while (true) {

 // get next request

 Socket myConn = null;

 while (myConn==null) {

 lock Q;

 if (Q.isEmpty()) // {

 // stop and wait

 } else {

 // get myConn from Q

 }

 unlock Q;

 }

 // get the next request; process

}

Design pattern:

 - Need to release lock to

avoid deadlock (to allow

main thread write into Q)

- Typically need to reacquire

lock after waking up

Wait-sets and Notification

❑ Every Java Object has an associated wait-
set (called wait list) in addition to a lock
object

57

object o o’s lock

o’s wait list

Wait-sets and Notification

❑Wait list object can be manipulated only while
the object lock is held

• Otherwise, IllegalMonitorStateException is thrown

58

object o o’s lock

o’s wait list

Wait-sets

❑ Thread enters the wait-set by invoking
wait()

o wait() releases the lock
• No other held locks are released

o then the thread is suspended

❑ Can add optional time wait(long
millis)

o wait() is equivalent to wait(0) – wait
forever

o for robust programs, it is typically a good idea
to add a timer 59

Worker

60

while (true) {

 // get next request

 Socket myConn = null;

 synchronized(Q) {

 while (Q.isEmpty()) {

 Q.wait();

 }

 myConn = Q.remove();

 } // end of sync

 // process request in myConn

} // end of while

while (true) {

 // get next request

 Socket myConn = null;

 while (myConn==null) {

 lock Q;

 if (! Q.isEmpty()) // {

 myConn = Q.remove();

 }

 unlock Q;

 } // end of while

 // get the next request; process

}

Note the while

loop; no guarantee

that Q is not empty

when wake up

Wait-set and Notification (cont)

❑ Threads are released from the wait-set when:
o notifyAll() is invoked on the object

• All threads released (typically recommended)

o notify() is invoked on the object

• One thread selected at ‘random’ for release

o The specified time-out elapses

o The thread has its interrupt() method invoked
• InterruptedException thrown

o A spurious wakeup occurs
• Not (yet!) spec’ed but an inherited property of underlying

synchronization mechanisms e.g., POSIX condition variables

61

Notification

❑ Caller of notify() must hold lock
associated with the object

❑ Those threads awoken must reacquire lock
before continuing
o (This is part of the function; you don’t need to

do it explicitly)

o Can’t be acquired until notifying thread
releases it

o A released thread contends with all other
threads for the lock

62

Main Thread

63

main {

 void run {

 while (true) {

 Socket con = welcomeSocket.accept();

 synchronize(Q) {

 Q.add(con);

 Q.notifyAll();

 }

 } // end of while

}

main {

 void run {

 while (true) {

 Socket con = welcomeSocket.accept();

 synchronized(Q) {

 Q.add(con);

 }

 } // end of while

}

welcome

socket

Main

thread

Thread KThread 1

Q: Dispatch

queue

Suspend

Worker

64

welcome

socket

Main

thread

Thread KThread 1

Q: Dispatch

queue

while (true) {

 // get next request

 Socket myConn = null;

 while (myConn==null) {

 synchronize(Q) {

 if (! Q.isEmpty()) // {

 myConn = Q.remove();

 }

 }

 } // end of while

 // process myConn

}

Busy wait

while (true) {

 // get next request

 Socket myConn = null;

 while (myConn==null) {

 synchronize(Q) {

 if (! Q.isEmpty()) // {

 myConn = Q.remove();

 } else {

 Q.wait();

 }

}

 } // end of while

 // process myConn

}

Worker: Another Format

65

while (true) {

 // get next request

 Socket myConn = null;

 synchronized(Q) {

 while (Q.isEmpty()) {

 Q.wait();

 }

 myConn = Q.remove();

 } // end of sync

 // process request in myConn

} // end of while

Note the while

loop; no guarantee

that Q is not empty

when wake up

Example

❑ See
o WaitNotify/Server.java

o WaitNotify/ServiceThread.java

66

Summary: Guardian via
Suspension: Waiting

67

synchronized (obj) {

 while (!condition) {

 try { obj.wait(); }

 catch (InterruptedException ex)

 { ... }

 } // end while

 // make use of condition

 } // end of sync

 Golden rule: Always test a condition in a loop
 Change of state may not be what you need

 Condition may have changed again

 Break the rule only after you are sure that it is
safe to do so

Summary: Guarding via
Suspension: Changing a Condition

68

synchronized (obj) {

 condition = true;

 obj.notifyAll(); // or obj.notify()

}

 Typically use notifyAll()

 There are subtle issues using notify(), in particular
when there is interrupt

Note

❑ Use of wait(), notifyAll() and notify() similar to
o Condition queues of classic Monitors

o Condition variables of POSIX PThreads API

o In C# it is called Monitor (http://msdn.microsoft.com/en-
us/library/ms173179.aspx)

❑ Python Thread module in its Standard Library is based
on Java Thread model
(https://docs.python.org/3/library/threading.html)
o “The design of this module is loosely based on Java’s threading model.

However, where Java makes locks and condition variables basic
behavior of every object, they are separate objects in Python.”

69

http://msdn.microsoft.com/en-us/library/ms173179.aspx)
http://msdn.microsoft.com/en-us/library/ms173179.aspx)
http://msdn.microsoft.com/en-us/library/ms173179.aspx)

Java (1.5)

❑ Condition created from a Lock

❑ await called with lock held
o Releases the lock

• But not any other locks held by this thread

o Adds this thread to wait set for lock

o Blocks the thread

❑ signallAll called with lock held
o Resumes all threads on lock’s wait set

o Those threads must reacquire lock before continuing
• (This is part of the function; you don’t need to do it explicitly) 70

interface Lock { Condition newCondition(); ... }

interface Condition {

 void await();

 void signalAll(); ...

}

Producer/Consumer Example

71

Lock lock = new ReentrantLock();

Condition ready = lock.newCondition();

boolean valueReady = false;

Object value;

void produce(Object o) {

 lock.lock();

 while (valueReady)

 ready.await();

 value = o;

 valueReady = true;

 ready.signalAll();

 lock.unlock();

}

Object consume() {

 lock.lock();

 while (!valueReady)

 ready.await();

 Object o = value;

 valueReady = false;

 ready.signalAll();

 lock.unlock();

}

Blocking Queues in Java

❑Design Pattern for producer/consumer
pattern with blocking, e.g.,
o put/take

❑ Two handy implementations
o LinkedBlockingQueue (FIFO, may be bounded)

o ArrayBlockingQueue (FIFO, bounded)

o (plus a couple more)

72

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent

/BlockingQueue.html

Beyond Class: Complete Java
Concurrency Framework
Executors

— Executor

— ExecutorService

— ScheduledExecutorService

— Callable

— Future

— ScheduledFuture

— Delayed

— CompletionService

— ThreadPoolExecutor

— ScheduledThreadPoolExecutor

— AbstractExecutorService

— Executors

— FutureTask

— ExecutorCompletionService

Queues

— BlockingQueue

— ConcurrentLinkedQueue

— LinkedBlockingQueue

— ArrayBlockingQueue

— SynchronousQueue

— PriorityBlockingQueue

— DelayQueue

73

Concurrent Collections

— ConcurrentMap

— ConcurrentHashMap

— CopyOnWriteArray{List,Set}

Synchronizers

— CountDownLatch

— Semaphore

— Exchanger

— CyclicBarrier

Locks: java.util.concurrent.locks

— Lock

— Condition

— ReadWriteLock

— AbstractQueuedSynchronizer

— LockSupport

— ReentrantLock

— ReentrantReadWriteLock

Atomics: java.util.concurrent.atomic

— Atomic[Type]

— Atomic[Type]Array

— Atomic[Type]FieldUpdater

— Atomic{Markable,Stampable}Reference

See jcf slides for a tutorial.

Correctness

❑ Threaded
programs are
typically more
complex.

❑What types
of properties
do you
analyze to
verify server
correctness?

74

// master

void run() {

 while (true) {

 Socket con = welcomeSocket.accept();

 synchronize(Q) {

 Q.add(con);

 Q.notifyAll();

 } // end of sync

 } // end of while

} // end of run()

// worker

void run() {

 while (true) {

 // get next request

 Socket myConn = null;

 synchronized(Q) {

 while (Q.isEmpty()) {

 Q.wait();

 } // end of while

 myConn = Q.remove();

 } // end of sync

 // process request in myConn

 } // end of while

} // end of run()

Key Correctness Properties

❑ Safety

❑ Liveness (progress)

❑ Fairness
o For example, in some settings, a designer may

want the threads to share load equally

75

Safety Properties

❑What safety properties?

o No read/write; write/write conflicts
• holding lock Q before reading or modifying shared

data Q and Q.wait_list

o Q.remove() is not on an empty queue

❑ There are formal techniques to model
server programs and analyze their
properties, but we will use basic analysis
o This is enough in many cases

76

Make Program Explicit

77

// dispatcher

void run() {

 while (true) {

 Socket con = welcomeSocket.accept();

 synchronize(Q) {

 Q.add(con);

 Q.notifyAll();

 } // end of sync

 } // end of while

} // end of run()

// dispatcher

 void run() {

1. while (true) {

2. Socket con = welcomeSocket.accept();

3. lock(Q) {

4. Q.add(con);

5. notify Q.wait_list; // Q.notifyAll();

6. unlock(Q);

 } // end of while

 } // end of run()

78

// service thread

void run() {

 while (true) {

 // get next request

 Socket myConn = null;

 synchronized(Q) {

 while (Q.isEmpty()) {

 Q.wait();

 } // end of while

 myConn = Q.remove();

 } // end of sync

 // process request in myConn

 } // end of while

}

// service thread

void run() {

1. while (true) {

 // get next request

2. Socket myConn = null;

3. lock(Q);

4. while (Q.isEmpty()) {

5. unlock(Q)

6. add to Q.wait_list;

7. yield until marked to wake; //wait

8. lock(Q);

9. } // end of while

10. myConn = Q.remove();

11. unlock(Q);

 // process request in myConn

 } // end of while

}

Statements to States (Dispatcher)

79

d3:

lock

// dispatcher

void run() {

1. while (true) {

2. Socket con = welcomeSocket.accept();

3. lock(Q) {

4. Q.add(con);

5. notify Q.wait_list; // Q.notifyAll();

6. unlock(Q);

 } // end of while

} // end of run()

d4:

Q.add

d5:

Qwl.notify

d6:

unlock

Statements to States (Service)

80

while (true) {

 // get next request

1. Socket myConn = null;

2. lock(Q);

3. while (Q.isEmpty()) {

4. unlock(Q)

5. add to Q.wait_list;

6. yield; //wait

7. lock(Q);

8. } // end of while isEmpty

9. myConn = Q.remove();

10. unlock(Q);

 // process request in myConn

 } // end of while

s2:

lock

s3:

Q.isEmpty

s4:

unlock

s5:

add Qwl

s6:

yield

s7:

lock
s9:

Q.remove

s10:

unlock

trues1:

Check Safety

81

d3:

lock

d4:

Q.add

d5:

Qwl.notify

d6:

unlock

conflict

s2:

lock

s3:

Q.isEmpty

s4:

unlock

s5:

add Qwl

s6:

yield

s7:

lock
s9:

Q.remove

s10:

unlock

trues1:

Real Implementation of wait

82

while (true) {

 // get next request

1. Socket myConn = null;

2. lock(Q);

3. while (Q.isEmpty()) {

4. add to Q.wait_list;

5. unlock(Q); after add to wait list

6. yield; //wait

7. lock(Q);

8. }

9. myConn = Q.remove();

10. unlock(Q);

 // process request in myConn

 } // end of while

Check Safety

83

d3:

lock

d4:

Q.add

d5:

Qwl.notify

d6:

unlock

s2:

lock

s3:

Q.isEmpty

s4’:

add Qw1

s5’:

unlock

s6:

yield

s7:

lock
s9:

Q.remove

s10:

unlock

trues1:

Liveness Properties

❑What liveness (progress) properties?

o dispatcher thread can always add to Q

o every connection in Q will be processed

84

Dispatcher Thread Can Always Add to Q

❑ Assume dispatcher thread is blocked

❑ Suppose Q is not empty, then each iteration removes one
element from Q

❑ In finite number of iterations, all elements in Q are removed
and all service threads unlock and block
o Need to assume each service takes finite amount of time (bound by a

fixed T0)

85

s2:

lock

s3:

Q.isEmpty

s4’:

add Qw1

s5’:

unlock

s6:

yield

s7:

lock
s9:

Q.remove

s10:

unlock

trues1:

Each Connection in Q is Processed

❑ Cannot be guaranteed unless
o there is fairness in the thread scheduler, or

o put a limit on Q size to block the dispatcher
thread

86

Summary: Program Correctness Analysis

❑ Safety
o No read/write; write/write conflicts

• holding lock Q before reading or modifying shared
data Q and Q.wait_list

o Q.remove() is not on an empty queue

❑ Liveness (progress)
o dispatcher thread can always add to Q

o every connection in Q will be processed

❑ Fairness
o For example, in some settings, a designer may

want the threads to share load equally

87

Use Java ThreadPoolExecutor

88

 server = new ServerSocket(port);
 System.out.println("Time server listens at port: " + port);

 // Create Java Executor Pool
 TimeServerHandlerExecutePool myExecutor
 = new TimeServerHandlerExecutePool(50, 10000);

 Socket socket = null;
 while (true) {
 socket = server.accept();
 myExecutor.execute(new TimeServerHandler(socket));
 } // end of while

Use Java ThreadPoolExecutor

89

public class TimeServerHandlerExecutePool {

 private ExecutorService executor;

 public TimeServerHandlerExecutePool(int maxPoolSize, int queueSize) {
 executor = new ThreadPoolExecutor(
 Runtime.getRuntime().availableProcessors(),
 maxPoolSize,
 120L, TimeUnit.SECONDS,
 new ArrayBlockingQueue<java.lang.Runnable>(queueSize)
);
 }

 public void execute(java.lang.Runnable task) {
 executor.execute(task);
 }
}

For Java ThreadPoolExecutor scheduling algorithm, see:

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ThreadPoolExecutor.html

Summary: Thread-Based
Network Server
❑ Multiple threads (execution sequences) offer multiple

execution sequences => blocking causes only one thread
being blocked

❑ Intuitive (sequential) programming model
❑ Shared address space simplifies optimizations

90

Accept

Conn

Read

Request

Find

File

Send

Header

Read File

Send Data

Accept

Conn

Read

Request

Find

File

Send

Header

Read File

Send Data

Thread 1

Thread N

…

❑ Thread creation overhead
❑ Thread synchronization overhead

o Need to handle synchronization -> otherwise race condition
o Handle synchronization -> Overhead, complexity (e.g., wait/notify, deadlock)
o Thread size (how many threads) difficult to tune

❑ Still cannot handle well the large-number of long, idle
connections problem (why?)

Summary: Thread-Based
Network Server

91

Accept

Conn

Read

Request

Find

File

Send

Header

Read File

Send Data

Accept

Conn

Read

Request

Find

File

Send

Header

Read File

Send Data

Thread 1

Thread N

…

Should You Use Threads?

❑ Typically avoid threads for io
o Use event-driven, not threads, for GUIs,

servers, distributed systems.

❑Use threads where true CPU
concurrency is needed.
o Where threads needed, isolate usage

in threaded application kernel: keep
most of code single-threaded. Threaded Kernel

Event-Driven Handlers

[Ousterhout 1995] 92

	Network Applications:�High-performance Server Design
	Outline
	Admin
	Recap: Latency of Basic HTTP/1.0
	Recap: Substantial Efforts to Speedup HTTP/1.0
	WebServer Implementation
	Demo
	Server Processing Steps
	Writing High Performance Servers: Major Issues
	Goal: Limited Only by Resource Bottleneck
	Outline
	Multi-Threaded Servers
	Background: Java Thread Model
	Thread vs Process
	Creating Java Thread
	Option 1: Extending Java Thread
	Option 1: Extending Java Thread
	Option 2: Implement the Runnable Interface
	Example: a Multi-threaded TCPServer
	Per-Request Thread Server
	Summary: Implementing Threads
	Modeling Per-Request Thread Server: Theory
	Problem of Per-Request Thread: Reality
	Recall: Little’s Law (1961)
	Discussion: How to Address the Issue
	Outline
	Using a Fixed Set of Threads (Thread Pool)
	Design 1: Threads Share Access to the welcomeSocket
	Design 2: Producer/Consumer
	Common Issues Facing Designs 1 and 2
	Concurrency and Shared Data
	Simple Example
	Simple Example
	What Happened?
	Synchronization
	Java Lock (1.5)
	Java Lock
	Java Lock
	Java synchronized
	Discussion
	Synchronization on this
	Synchronization on this
	Example
	Discussion
	Why not Synchronization
	Synchronization Overhead
	Synchronization Overhead
	Design 2: Producer/Consumer
	Main
	Worker
	Example
	Problem of ShareQ Design
	Solution: Suspension
	Solution: Suspension
	Solution: Suspension
	Wait-sets and Notification
	Wait-sets and Notification
	Wait-sets
	Worker
	Wait-set and Notification (cont)
	Notification
	Main Thread
	Worker
	Worker: Another Format
	Example
	Summary: Guardian via Suspension: Waiting
	Summary: Guarding via Suspension: Changing a Condition
	Note
	Java (1.5)
	Producer/Consumer Example
	Blocking Queues in Java
	Beyond Class: Complete Java Concurrency Framework
	Correctness
	Key Correctness Properties
	Safety Properties
	Make Program Explicit
	Slide 78
	Statements to States (Dispatcher)
	Statements to States (Service)
	Check Safety
	Real Implementation of wait
	Check Safety
	Liveness Properties
	Dispatcher Thread Can Always Add to Q
	Each Connection in Q is Processed
	Summary: Program Correctness Analysis
	Use Java ThreadPoolExecutor
	Use Java ThreadPoolExecutor
	Summary: Thread-Based Network Server
	Summary: Thread-Based Network Server
	Should You Use Threads?

