
Network Applications:
Load Balancing among Homogeneous

Servers

1

Qiao Xiang, Congming Gao, Qiang Su

https://sngroup.org.cn/courses/cnns-
xmuf25/index.shtml

10/21/2025

This deck of slides are heavily based on CPSC 433/533 at Yale University, by courtesy of Dr. Y. Richard Yang.

2

Outline

q Admin and recap
q Application overlays (distributed network

applications) to
o scale bandwidth/resource (BitTorrent)

Admin

q Midterm exam on Oct. 28 (during lab class)
o cover from introduction to application layer
o 15-16 subjective questions over 100 minutes
o 1-page cheat sheet allowed

3

3

Recap: Why Multiple Servers?

q Scalability
o Scaling beyond single server throughput

• There is a fundamental limit on what a single server can
– process (CPU/bw/disk throughput)
– store (disk/memory)

o Scaling beyond single geo location latency
• There is a limit on the speed of light
• Network detour and delay further increase the delay

4

Recap: Request Routing

Internet- Global request routing: select
a server site for each request

- Local request routing: select
a specific server at the chosen
site Client

Site A Site B

?

5

Request Routing: Basic Architecture

server
state

net state: path
property between

servers/clients

server
selection
algorithm

requests
notify client

about selection
(direction mech.)

6

Client Direction Mechanisms

q Key difficulty
o May need to handle a large of clients

q Basic types of mechanisms
o Application layer, e.g.,

• App/user is given a list of candidate server names
• HTTP redirector

o DNS: name resolution gives a list of server addresses
o IP layer: Same IP address represents multiple physical

servers
• IP anycast: Same IP address shared by multiple servers

and announced at different parts of the Internet.
Network directs different clients to different servers

• Smart-switch indirection: a server IP address may be a
virtual IP address for a cluster of physical servers

7

Recap: Direction Mechanisms

8

Cluster2
in Europe

Cluster1
in US East

Cluster2
in US West

proxy

Load
balancer

Load
balancer

servers

DNS name1

IP1 IP2 IPn

DNS name2

App

- Rewrite
- Direct reply
- Fault tolerance

Scalability of Server-Only Approaches

9

edge.
servers

C0

client 1

client 2

client 3

client n

DNS

origin

Outline

q Admin and recap
q Multiple servers
q Application overlays

o potential

10

An Upper Bound on Scalability

q Idea: use
resources from
both clients and
the server

q Assume
o need to achieve

same rate to all
clients

o only uplinks can
be bottlenecks

q What is an upper
bound on
scalability?

11

server

C0

client 1

client 2

client 3

client n

C1

C2
C3

Cn

The Scalability Problem

¨Maximum
throughput
R = min{C0,
(C0+SCi)/n}

¨ The bound is
theoretically
approachable

12

server

C0

client 1

client 2

client 3

client n

C1

C2
C3

Cn

Theoretical Capacity:
upload is bottleneck

q Assume c0 > (C0+SCi)/n

q Tree i:
server à client i: ci/(n-1)
client i à other n-1 clients

q Tree 0:
server has remaining
cm= c0 – (c1 + c2 + … cn)/(n-1)
send to client i: cm/n

13

C0

C1

C2 Ci

Cn

c0

ci

c1 c2

cn

ci /(n-1)

cm /n

R = min{C0, (C0+SCi)/n}

Why not Building the Trees?

14

servers

C0

client 1

client 2

client 3

client n

C1

C2
C3

Cn

q Clients come and go
(churns): maintaining the
trees is too expensive
q Each client needs N
connections

Server+Host (P2P) Content
Distribution: Key Design Issues
r Robustness

m Resistant to churns and
failures

r Efficiency
m A client has content that

others need; otherwise, its
upload capacity may not be
utilized

r Incentive: clients are willing
to upload
m Some real systems nearly

50% of all responses are
returned by the top 1% of
sharing hosts

15

servers

C0

client 1

client 2

client 3

client n

C1

C2
C3

Cn

Discussion: How to handle the
issues?
q Robustness

q Efficiency

q Incentive

16

servers/
seeds

C0

client 1

client 2

client 3

client n

C1

C2
C3

Cn

Example: BitTorrent

q A P2P file sharing protocol
q Created by Bram Cohen in 2004

o Spec at bep_0003:
http://www.bittorrent.org/beps/bep_0003.html

17

18

BitTorrent: Lookup

webserver
user

HTTP GET MYFILE.torrent

http://mytracker.com:6969/
S3F5YHG6FEB
FG5467HGF367
F456JI9N5FF4E
…

MYFILE.torrent

Metadata (.torrent) File Structure

q Meta info contains information necessary to
contact the tracker and describes the files
in the torrent
o URL of tracker
o file name
o file length
o piece length (typically 256KB)
o SHA-1 hashes of pieces for verification
o also creation date, comment, creator, …

19

Tracker Protocol
q Communicates with clients via HTTP/HTTPS

q Client GET request
o info_hash: uniquely identifies the file
o peer_id: chosen by and uniquely identifies the client
o client IP and port
o numwant: how many peers to return (defaults to 50)
o stats: e.g., bytes uploaded, downloaded

q Tracker GET response
o interval: how often to contact the tracker
o list of peers, containing peer id, IP and port
o stats

20

21

Tracker Protocol

tracker

webserver
user

“register”

ID1 169.237.234.1:6881
ID2 190.50.34.6:5692
ID3 34.275.89.143:4545
…
ID50 231.456.31.95:6882

list of peers

Peer 50 Peer 2 Peer 1

…

22

Robustness and efficiency:
Piece-based Swarming

Block: 16KB

File
Block: unit of download

r Divide a large file into small blocks and request
block-size content from different peers (why?)

r If do not finish downloading a block from one peer
within timeout (say due to churns), switch to
requesting the block from another peer

23

Detail: Peer Protocol
(Over TCP)

q Peers exchange bitmap representing content
availability
o bitfield msg during initial connection
o have msg to notify updates to bitmap
o to reduce bitmap size, aggregate multiple blocks as a piece

Local PeerRemote Peer

BitField/have BitField/have

10 0 1

Piece
256KB

Incomplete Piece

Peer Request
q If peer A has a piece that

peer B needs, peer B
sends interested to A

q unchoke: indicate that
A allows B to request

q request: B requests
a specific block from A

q piece: specific data
24

1.interested/
3. request

2. unchoke/
4. piece

http://www.bittorrent.org/beps/
bep_0003.html

Key Design Points

q request:
o which data blocks

to request?

q unchoke:
o which peers to

serve?

1.interested/
3. request

2. unchoke/
4. piece

25

Request: Block Availability

q Request (local) rarest first
o achieves the fastest replication of rare pieces
o obtain something of value

26

Block Availability: Revisions

q When downloading starts (first 4 pieces):
choose at random and request them from
the peers
o get pieces as quickly as possible
o obtain something to offer to others

q Endgame mode
o defense against the “last-block problem”: cannot

finish because missing a few last pieces
o send requests for missing pieces to all

peers in our peer list
o send cancel messages upon receipt of a piece

27

BitTorrent: Unchoke

q Periodically (typically
every 10 seconds) calculate
data-receiving rates from
all peers
q Upload to (unchoke) the
fastest

- constant number (4) of
unchoking slots
- partition upload bw
equally among unchoked

commonly referred to as “tit-for-tat” strategy

1.interested/
3. request

2. unchoke/
4. piece

28

Optimistic Unchoking

q Periodically select a peer at random
and upload to it
o typically every 3 unchoking rounds (30 seconds)

q Multi-purpose mechanism
o allow bootstrapping of new clients
o continuously look for the fastest peers

(exploitation vs exploration)

29

BitTorrent Fluid Analysis

q Normalize file size to 1
q x(t): number of downloaders (also known as leechers)

who do not have all pieces at time t.
q y(t): number of seeds in the system at time t.
q l: the arrival rate of new requests.
q µ: the uploading bandwidth of a given peer.
q c: the downloading bandwidth of a given peer, assume

c ≥ µ.
q q: the rate at which downloaders abort download.
q g: the rate at which seeds leave the system.
q h: indicates the effectiveness of downloader sharing,

η takes values in [0, 1].
30

System Evolution

Solving steady state:

Define

31
"Modeling and Performance Analysis of BitTorrent-Like Peer-to-Peer Networks", SIGCOMM'04
https://conferences.sigcomm.org/sigcomm/2004/papers/p444-qiu1.pdf

System State

32

Q: How long does each downloader stay as a downloader?

l

Key take-
away: not
scaling inverse
with system
size (x)
• New requests

comes, new
bandwidth also
comes

Recap

q Applications
q Client-server applications

- Single server
- Multiple servers load balancing

q Application overlays (distributed network
applications) to
- scale bandwidth/resource (BitTorrent)
- distribute content lookup (Freenet, DHT, Chord)

[optional]
- distribute content verification (Block chain) [optional]
- achieve anonymity (Tor)

[optional]

33

Outline

q Admin and recap
Ø Overview of transport layer
q UDP
q Reliable data transfer, the stop-and-go

protocols

34

35

Overview

q Provide logical communication
between app’ processes

q Transport protocols run in
end systems
o send side: breaks app

messages into segments,
passes to network layer

o rcv side: reassembles
segments into messages,
passes to app layer

q Transport vs. network layer
services:
o Network layer: data transfer

between end systems
o Transport layer: data

transfer between processes
• relies on, enhances network

layer services

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

36

Transport Layer Services and Protocols

q Reliable, in-order delivery (TCP)
o multiplexing
o reliability and connection setup
o congestion control
o flow control

q Unreliable, unordered delivery: UDP
o multiplexing

q Services not available:
o delay guarantees
o bandwidth guarantees

37

Transport Layer: Road Ahead
q Class 1 (today):

o transport layer services
o connectionless transport: UDP
o reliable data transfer using stop-and-wait/alternating-bit protocol

q Class 2 (ready for lab assignment 4/part 1):
o sliding window reliability
o TCP reliability

• overview of TCP
• TCP RTT measurement
• TCP connection management

q Class 3 (ready for lab assignment 4/part 2 [optional]):
o principles of congestion control
o TCP congestion control; AIMD; TCP Reno

q Class 4:
o TCP Vegas, performance modeling; Nash Bargaining solution

q Class 5:
o primal-dual as a resource allocation and analysis framework

q …

Outline

q Admin and recap
q Overview of transport layer
Ø UDP and error checking
q Reliable data transfer, the stop-and-go

protocols

38

UDP: User Datagram Protocol [RFC 768]

qOften used for
streaming
multimedia
apps
o loss tolerant
o rate sensitive

qOther UDP
uses
o DNS
o SNMP

source port # dest port #
32 bits

Application
data
(message)

UDP segment format

length checksum
Length, in

bytes of
UDP

segment,
including

header

39

