
Network Transport Layer:
Sliding Window, TCP

This deck of slides are heavily based on CPSC 433/533 at Yale University, by courtesy of Dr. Y. Richard Yang.

Qiao Xiang, Congming Gao, Qiang Su

https://sngroup.org.cn/courses/cnns-
xmuf25/index.shtml

10/30/2025

Outline

❑Admin and recap

❑ Reliable data transfer,
❑ stop-and-wait

❑ sliding window

❑TCP

2

Admin

❑ Lab 4 to be posted this week

33

4

Recap: Reliable Data Transfer Context

send
side

receive
side

rdt_send(): called from above,
(e.g., by app.)

udt_send(): called by rdt,
to transfer packet over

unreliable channel to receiver

rdt_rcv(): called from below;
when packet arrives on rcv-side of

channel

deliver_data(): called by
rdt to deliver data to upper

5

Recap: Reliable Data Transfer Setting

We’ll:

❑ incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

❑ consider only unidirectional data transfer
o but control info will flow on both directions !

❑ use finite state machines (FSM) to specify
sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this
“state” next state

uniquely determined
by next event

event
actions

6

rdt3.0: Channels with Errors and Loss

New assumption:
underlying channel can
also lose packets (data
or ACKs)
o checksum, seq. #, ACKs,

retransmissions will be of
help, but not enough

Q: Does rdt2.2 work
under losses?

Approach: sender waits
“reasonable” amount of
time for ACK

❑ requires countdown timer

❑ retransmits if no ACK
received in this time

❑ if pkt (or ACK) just delayed
(not lost):

o retransmission will be
duplicate, but use of seq.
#’s already handles this

o receiver must specify seq
of pkt being ACKed

7

rdt3.0 Sender

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

Wait

for

ACK0

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,1))

Wait for

call 1 from

above

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,0))

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,1)

stop_timer

stop_timer

timeout

udt_send(sndpkt)

start_timer

udt_send(sndpkt)

start_timer

timeout

rdt_rcv(rcvpkt)

Wait for

call 0 from

above

Wait

for

ACK1



rdt_rcv(rcvpkt)







udt_send(sndpkt)

rdt3.0: Stop-and-Wait Performance

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

What is Usender: utilization – fraction of time link busy sending?

Assume: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet
8
8

9

Performance of rdt3.0

❑ rdt3.0 works, but performance stinks

❑ Example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

T
transmit = 8kb/pkt

10**9 b/sec
= 8 microsec

o 1KB pkt every 30 msec -> 33kB/sec throughput over 1 Gbps link

o network protocol limits use of physical resources !

U
sender

=
.008

30.008
= 0.00027

microsec

onds

L / R

RTT + L / R
=

L (packet length in bits)
R (transmission rate, bps)

=

A Summary of Questions

❑ How to improve the performance of rdt3.0?

❑ What if there are reordering and
duplication?

❑ How to determine the “right” timeout
value?

10

Sliding Window Protocols: Pipelining

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged pkts
o range of sequence numbers must be increased

o buffering at sender and/or receiver

11

Pipelining: Increased Utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

U
sender

=
.024

30.008
= 0.0008

microsecon

ds

3 * L / R

RTT + L / R
=

increase utilization
by a factor of 3!

Question: a rule-of-thumb window size?
12

Realizing Sliding Window: Go-Back-n

Sender:
❑ k-bit seq # in pkt header

❑ “window” of up to W, consecutive unack’ed pkts allowed

❑ ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”

o note: ACK(n) could mean two things: I have received upto and
include n, or I am waiting for n

❑ timer for the packet at base

❑ timeout(n): retransmit pkt n and all higher seq # pkts in window

W

13

GBN: Sender FSM

Wait

start_timer

udt_send(sndpkt[base])

udt_send(sndpkt[base+1])

…

udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+W) {

 sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)

 udt_send(sndpkt[nextseqnum])

 if (base == nextseqnum) start_timer

 nextseqnum++

 } else

 block sender

if (new packets ACKed) {

 advance base;

 if (more packets waiting)

 send more packets

}

if (base == nextseqnum)

 stop_timer

else

 start_timer for the packet at new base

rdt_rcv(rcvpkt) &&

 notcorrupt(rcvpkt)

base=1

nextseqnum=1

rdt_rcv(rcvpkt)

 && corrupt(rcvpkt)



14

GBN: Receiver FSM

Only state: expectedseqnum

❑ out-of-order pkt:
o discard (don’t buffer) -> no receiver buffering!

o re-ACK pkt with highest in-order seq #

o may generate duplicate ACKs

Wait

udt_send(sndpkt)

default

rdt_rcv(rcvpkt)

 && notcurrupt(rcvpkt)

 && hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(expectedseqnum,ACK,chksum)

udt_send(sndpkt)

expectedseqnum++

expectedseqnum=1

sndpkt =

 make_pkt(expectedseqnum,ACK,chksum)



15

GBN in
Action

window
size = 4

16

Analysis: Efficiency of Go-Back-n

❑Assume window size W

❑Assume each packet is lost with probability p

❑On average, how many packets do we send for
each data packet received?

17

Selective Repeat

❑ Sender window
o Window size W: W consecutive unACKed seq #’s

❑ Receiver individually acknowledges correctly
received pkts
o buffers out-of-order pkts, for eventual in-order

delivery to upper layer

o ACK(n) means received packet with seq# n only

o buffer size at receiver: window size

❑ Sender only resends pkts for which ACK not
received
o sender timer for each unACKed pkt

18

Selective Repeat: Sender, Receiver Windows

W

W

19

Selective Repeat

data from above :
❑ unACKed packets is less than

window size W, send;
otherwise block app.

timeout(n):
❑ resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+W-1]:

❑ mark pkt n as received

❑ update sendbase to the first
packet unACKed

sender
pkt n in [rcvbase, rcvbase+W-1]

❑ send ACK(n)

❑ if (out-of-order)
 mark and buffer pkt n
else /*in-order*/

 deliver any in-order
packets

otherwise:
❑ ignore

receiver

20

Selective Repeat in Action

21

Discussion: Efficiency of Selective Repeat

❑ Assume window size W

❑ Assume each packet is lost with probability
p

❑ On average, how many packets do we send
for each data packet received?

22

Selective Repeat:
Seq# Ambiguity

Example:
❑ seq #’s: 0, 1, 2, 3

❑ window size=3

❑ Error: incorrectly
passes duplicate data
as new.

23

State Invariant: Window Location

❑ Go-back-n (GBN)

❑ Selective repeat (SR)

sender window

receiver window

sender window

receiver window

24

Window Location

❑ Go-back-n (GBN)

❑ Selective repeat (SR)

sender window

receiver window

sender window

receiver window

Q: what relationship

between seq # size and

window size?

25

Selective Repeat

data from above :
❑ unACKed packets is less than

window size W, send;
otherwise block app.

timeout(n):
❑ resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+W-1]:

❑ mark pkt n as received

❑ update sendbase to the first
packet unACKed

sender
pkt n in [rcvbase, rcvbase+W-1]

❑ send ACK(n)

❑ if (out-of-order)
 mark and buffer pkt n
else /*in-order*/

 deliver any in-order
packets

pkt n in [rcvbase-W, rcvbase-1]

❑ send ACK(n)

otherwise:
❑ ignore

receiver

26

Sliding Window Protocols:
Go-back-n and Selective Repeat

Go-back-n Selective Repeat

data bandwidth: sender
to receiver
(avg. number of times a
pkt is transmitted)

ACK bandwidth
(receiver to sender)

Relationship between M (the
number of seq#) and W
(window size)

Buffer size at
receiver

Complexity

p: the loss rate of a packet; M: number of seq# (e.g., 3 bit M = 8); W: window size

More efficient Less efficient

M > W M ≥ 2W

1 W

Simpler More complex

Less efficient

p

pwp

−

+−

1

1

More efficient

p−1
1

27

Outline

❑Admin and Recap

❑ Reliable data transfer
o perfect channel

o channel with bit errors

o channel with bit errors and losses

o sliding window: reliability with throughput

➢ TCP reliability

29

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

❑ Point-to-point reliability: one sender, one receiver

❑ Flow controlled and congestion controlled

30

Evolution of TCP

Source: http://webcourse.cs.technion.ac.il/236341/Winter2015-2016/ho/WCFiles/Tutorial10.pdf

31

Evolution of TCP

Source: http://webcourse.cs.technion.ac.il/236341/Winter2015-2016/ho/WCFiles/Tutorial10.pdf

multiple

versions

32

TCP Reliable Data Transfer

❑ Connection-oriented:
o connection management

• setup (exchange of
control msgs) init’s
sender, receiver state
before data exchange

• close

❑ Full duplex data:
o bi-directional data flow

in same connection

❑ A sliding window protocol
o a combination of go-back-n

and selective repeat:
• send & receive buffers
• cumulative acks
• TCP uses a single

retransmission timer
• do not retransmit all

packets upon timeout

socket

door

TCP

send buffer

TCP

receive buffer

socket

door

segment

application

writes data
application

reads data

33

TCP Segment Structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number

rcvr window size

ptr urgent datachecksum

FSRPAU
head
len

not
used

Options (variable length)RST, SYN, FIN:
connection

management
(reset, setup

teardown
commands)

flow control

ACK: ACK #
valid

counting
by bytes
of data
(not segments!)

Also in UDP

URG: urgent data
(generally not used)

PSH: push data now
(generally not used)

34

Outline

❑Admin and Recap

❑ Reliable data transfer
o perfect channel

o channel with bit errors

o channel with bit errors and losses

o sliding window: reliability with throughput

❑ TCP reliability
➢ data seq#, ack, buffering

35

Flow Control

❑ receive side of a
connection has a
receive buffer:

❑ speed-matching
service: matching the
send rate to the
receiving app’s drain
rate

❑ app process may be
slow at reading from
buffer

sender won’t overflow
receiver’s buffer by

transmitting too much,
 too fast

flow control

36

TCP Flow Control: How it Works

❑ spare room in buffer
= RcvWindow

source port # dest port #

application
data

(variable length)

sequence number

acknowledgement number

rcvr window size

ptr urgent datachecksum

FSRPAU
head
len

not
used

Options (variable length)

37

TCP Seq. #’s and ACKs

Seq. #’s:

❑ byte stream
“number” of first
byte in segment’s
data

ACKs:

❑ seq # of next byte
expected from
other side

❑ cumulative ACK in
standard header

❑ selective ACK in
options

Host A Host B

User
types
‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

time
simple telnet scenario

38

TCP Send/Ack Optimizations

❑TCP includes many tune/optimizations, e.g.,
o the “small-packet problem”: sender sends a lot of

small packets (e.g., telnet one char at a time)
• Nagle’s algorithm: do not send data if there is small

amount of data in send buffer and there is an unack’d
segment

o the ”ack inefficiency” problem: receiver sends too
many ACKs, no chance of combing ACK with data

• Delayed ack to reduce # of ACKs/combine ACK with
reply

39

TCP Receiver ACK Generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with

expected seq #. All data up to

expected seq # already ACKed

Arrival of in-order segment with

expected seq #. One other

segment has ACK pending

Arrival of out-of-order segment

higher-than-expect seq. # .

Gap detected

Arrival of segment that

partially or completely fills gap

TCP Receiver Action

Delayed ACK. Wait up to 500ms

for next segment. If no next segment,

send ACK

Immediately send single cumulative

ACK, ACKing both in-order segments

Immediately send duplicate ACK,

indicating seq. # of next expected byte

Immediate send ACK, provided that

segment starts at lower end of gap

40

Outline

❑Admin and Recap

❑ Reliable data transfer
o perfect channel

o channel with bit errors

o channel with bit errors and losses

o sliding window: reliability with throughput

❑ TCP reliability
o data seq#, ack, buffering

➢ timeout realization

41

TCP Reliable Data Transfer

❑ Basic structure: sliding window protocol

❑ Remaining issue: How to determine the
“right” parameters?
o timeout value?

o sliding window size?

42

History

❑ Key parameters for TCP in mid-1980s
o fixed window size W

o timeout value = 2 RTT

❑Network collapse in the mid-1980s
o UCB → LBL throughput dropped by 1000X !

❑ The intuition was that the collapse was
caused by wrong parameters…

43

Timeout: Cost of Timeout Param

Why is good timeout value important?

❑ too short

o premature timeout

o unnecessary retransmissions; many duplicates

❑ too long
o slow reaction to segment loss

Q: Is it possible to set Timeout as a constant?

Q: Any problem w/ the early approach: Timeout = 2 RTT

44

Setting Timeout
Problem:

❑ Ideally, we set timeout = RTT,
 but RTT is not a fixed value
=>
using the average of RTT will generate
many timeouts due to network variations

❑ Possibility: using the average/median of RTT
❑ Issue: this will generate many timeouts due to network variations

Solution:

❑ Set Timeout RTO = avg + “safety margin” based on variation

Timeout = EstRTT + 4 * DevRTT

TCP approach:

RTT

freq.

45

Compute EstRTT and DevRTT

EstRTT = (1-alpha)*EstRTT + alpha*SampleRTT

❑ Exponential weighted moving average (EWMA)
o influence of past sample decreases exponentially fast

- SampleRTT: measured time
 from segment transmission
 until ACK receipt
- typical value: alpha = 0.125

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

DevRTT = (1-beta)*DevRTT + beta|SampleRTT-EstRTT|

(typically, beta = 0.25)

46

An Example TCP Session

47

Fast Retransmit

❑ Issue: Timeout period often relatively long:
o long delay before resending lost packet

❑ Question: Can we detect loss faster than RTT?

❑ If sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:
o resend segment before

timer expires

❑ Detect lost segments via
duplicate ACKs
o sender often sends many

segments back-to-back

o if segment is lost, there will
likely be many duplicate ACKs

48

Triple Duplicate Ack

1 2 3 4 5 6

Packets

Acknowledgements (waiting seq#)

7

2 3 4 4 4 4

49

 event: ACK received, with ACK field value of y

 if (y > SendBase) {

 …

 SendBase = y

 if (there are currently not-yet-acknowledged segments)

 start timer

 …

 }

 else {

 increment count of dup ACKs received for y

 if (count of dup ACKs received for y = 3) {

 resend segment with sequence number y

 …

Fast Retransmit:

a duplicate ACK for
already ACKed segment fast retransmit

50

TCP:
reliable
data
transfer

00 sendbase = initial_sequence number agreed by TWH

01 nextseqnum = initial_sequence number by TWH

02 loop (forever) {

03 switch(event)

04 event: data received from application above

05 if (window allows send)

06 create TCP segment with sequence number nextseqnum

06 if (no timer) start timer

07 pass segment to IP

08 nextseqnum = nextseqnum + length(data)

 else put packet in buffer

09 event: timer timeout for sendbase

10 retransmit segment

11 compute new timeout interval

12 restart timer

13 event: ACK received, with ACK field value of y

14 if (y > sendbase) { /* cumulative ACK of all data up to y */

15 cancel the timer for sendbase

16 sendbase = y

17 if (no timer and packet pending) start timer for new sendbase

17 while (there are segments and window allow)

18 sent a segment;

18 }

19 else { /* y==sendbase, duplicate ACK for already ACKed segment */

20 increment number of duplicate ACKs received for y

21 if (number of duplicate ACKS received for y == 3) {

22 /* TCP fast retransmit */

23 resend segment with sequence number y

24 restart timer for segment y

25 }

26 } /* end of loop forever */

Simplified
TCP
sender

51

Outline

❑Admin and Recap

❑ Reliable data transfer
o perfect channel

o channel with bit errors

o channel with bit errors and losses

o sliding window: reliability with throughput

❑ TCP reliability
o data seq#, ack, buffering

o timeout realization

➢ connection management

52

Why Connection Setup/When to
Accept (Safely Deliver) First Packet?

sender receiver

accept

53

Why Connection Setup/When to
Accept (Safely Deliver) First Packet?

sender receiver

accept

accept?

54
54

Transport “Safe-Setup” Principle

❑A general safety principle for a receiver R
to accept a message from a sender S is the
general “authentication” principle, which
consists of two conditions:
Transport authentication principle:
- [p1] Receiver can be sure that what Sender says is fresh
- [p2] Receiver receives something that only Sender can say

We first assume a secure setting: no malicious attacks.

Exercise: Techniques to allow a receiver to check for freshness
(e.g., add a time stamp)?

55

Generic Challenge-Response
Structure Checking Freshness

sender receiver

deliver

56

Three Way Handshake (TWH) [Tomlinson 1975]

Host A Host B

SYN: indicates connection setup

accept data only after

verified y is bounced back

x is the init. seq

notify initial seq#. Accept?

think of y as a challenge

57

Make “Challenge y” Robust

❑ To avoid that “SYNC ACK y” comes from
reordering and duplication
o for each connection (sender-receiver pair), ensuring that

two identically numbered packets are never outstanding
at the same time

• network bounds the life time of each packet
• a sender will not reuse a seq# before it is sure that all packets

with the seq# are purged from the network

• seq. number space should be large enough to not limit
transmission rate

❑ Increasingly move to cryptographic challenge and
response

60

Connection Close

❑ Why connection close?
o so that each side can

release resource and
remove state about the
connection (do not want
dangling socket)

client server

init. close

close

close

release

resource?

release

resource?

release

resource?

61

General Case: The Two-Army Problem

The gray (blue) armies need to agree on whether or not they will attack the white army. They

achieve agreement by sending messengers to the other side. If they both agree, attack; otherwise,

no. Note that a messenger can be captured!
62

Time_Wait
❑Generic technique: Timeout to “solve” infeasible

problem
o Instead of message-driven state transition, use a timeout

based transition; use timeout to handle error cases

63

client server

init. close

close

close

release

resource?

release

resource?

release

resource?

Closed
Working

Time_WaiitWorking Closed

Time_Wait Design Options

- Time to

retransmit

ACK

Host A Host B

close

Design 2 (receiver time wait)

Close after

first ACK

All states removed

All states removed

Host A Host B

close

- Time = n x timeout

- Time to retry FIN

after each timeout

Design 1 (initiator time wait)

Close after receive FIN

All states removed

All states

removed

64

%netstat -t -a CLOSED

LISTEN

SYN

RCVD

CLOSED

SYN

SENT

ESTABLSIHED

ESTABLSIHED

FIN

WAIT 1

ESTABLSIHED ESTABLSIHED

CLOSE

WAIT

LAST

ACK
FIN

WAIT 2

TIME

WAIT

65

TCP Connection Management

TCP lifecycle: init SYN/FIN
CLOSED

SYN

RCVD

CLOSED

SYN

SENT

ESTABLSIHED

FIN

WAIT 1

ESTABLSIHED ESTABLSIHED

CLOSE

WAIT

LAST

ACK
FIN

WAIT 2

TIME

WAIT

http://dsd.lbl.gov/TCP-tuning/ip-sysctl-2.6.txt
66

TCP Connection Management

TCP lifecycle: wait for
SYN/FIN

CLOSED

SYN

RCVD

CLOSED

SYN

SENT

ESTABLSIHED

FIN

WAIT 1

ESTABLSIHED ESTABLSIHED

CLOSE

WAIT

LAST

ACK
FIN

WAIT 2

TIME

WAIT

67

A Summary of Questions

❑ Basic structure: sliding window protocols

❑How to determine the “right” parameters?
✓ timeout: mean + variation

o sliding window size?

68

	Network Transport Layer:�Sliding Window, TCP
	Outline
	Admin
	Recap: Reliable Data Transfer Context
	Recap: Reliable Data Transfer Setting
	rdt3.0: Channels with Errors and Loss
	rdt3.0 Sender
	rdt3.0: Stop-and-Wait Performance
	Performance of rdt3.0
	Slide 10
	Sliding Window Protocols: Pipelining
	Slide 12
	Realizing Sliding Window: Go-Back-n
	Slide 14
	Slide 15
	GBN in�Action
	Analysis: Efficiency of Go-Back-n
	Selective Repeat
	Selective Repeat: Sender, Receiver Windows
	Selective Repeat
	Slide 21
	Slide 22
	Selective Repeat: �Seq# Ambiguity
	Slide 24
	Slide 25
	Selective Repeat
	Slide 27
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	TCP Reliable Data Transfer
	TCP Segment Structure
	Slide 35
	Flow Control
	TCP Flow Control: How it Works
	Slide 38
	TCP Send/Ack Optimizations
	TCP Receiver ACK Generation [RFC 1122, RFC 2581]
	Slide 41
	Slide 42
	Slide 43
	Timeout: Cost of Timeout Param
	Setting Timeout
	Compute EstRTT and DevRTT
	An Example TCP Session
	Fast Retransmit
	Slide 49
	Fast Retransmit:
	TCP: reliable data transfer
	Slide 52
	Why Connection Setup/When to Accept (Safely Deliver) First Packet?
	Why Connection Setup/When to Accept (Safely Deliver) First Packet?
	Transport “Safe-Setup” Principle
	Generic Challenge-Response Structure Checking Freshness
	Three Way Handshake (TWH) [Tomlinson 1975]
	Make “Challenge y” Robust
	Connection Close
	General Case: The Two-Army Problem
	Time_Wait
	Time_Wait Design Options
	Slide 65
	TCP Connection Management
	TCP Connection Management
	Slide 68

