Network Transport Layer:
Sliding Window, TCP

Qiao Xiang, Congming Gao, Qiang Su

https://sngroup.org.cn/courses/cnns-
xmuf25/index.shtml

10/30/2025

This deck of slides are heavily based on CPSC 433/533 at Yale University, by courtesy of Dr. Y. Richard Yang.

Qutline

d Admin and recap

A Reliable data transfer,
a stop-and-wait
0 sliding window

aTCP

Admin

QdLab 4 to be posted this week

Recap: Reliable Data Transfer Context

rdt send () : called from above,
(e.g., by app.)

\ rdt send()

send [reliable data
id fransfer protocol
Slde |sending side)

deliver data() : called by
rdt to deliver data to upper

/

data Tdeliver_data ()

relioble data receive
fransfer protocol id
(receiving side) Side

udt_send ()} [packel

packet Irdt_rcv ()

T—»()unrelicible channel)<T

udt send() : called by rdt,
to transfer packet over
unreliable channel to receiver

rdt rcv () : called from below;
when packet arrives on rcv-side of
channel

Recap: Reliable Data Transfer Setting

We'll:
Q incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

a consider only unidirectional data transfer
o but control info will flow on both directions !

Q use finite state machines (FSM) to specify

sender, receiver
event causing state transition

actions taken on state transition

/ \
event
actions

state: when in this
“state” next state
uniquely determined
by next event

rdt3.0: Channels with Errors and Loss

New assumption:
underlying channel can

also lose packets (data

or ACKs)

o checksum, seq. #, ACKs,
retransmissions will be of

help, but not enough

Q: Does rdt2.2 work
under losses?

Approach: sender waits

“reasonable” amount of
time for ACK

requires countdown timer

retransmits if no ACK
received in this time

if pkt (or ACK) just delayed
(not lost):
o retransmission will be

duplicate, but use of seq.
#’ s already handles this

o receiver must specify seq
of pkt being ACKed

rdt3.0 Sender

rdt_send(data) rdt_rcv(rcvpkt) &&
\ sndpkt = make_pkt(0, data, checksum) (corrupt(rcvpkt) ||
\ udt _send(sndpkt) iSACK(rcvpkt,1))

rdt_rcv(rcvpkt) \ start_timer

udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

stop_timer

timeout

udt_send(sndpkt) C dt kt

start_timer (_/ oV pe)
A

rdt_rcv(rcvpkt) && rdt_send(data)
(corrupt(rcvpkt) || sndpkt = make_pkt(1, data, checksum)

iSACK (rcvpkt,0)) udt_send(sndpkt)
N start_timer

rdt3.0: Stop-and-Wait Performance

sender receiver

first packet bit transmitted, t = 0 —fxe--------- - oo
last packet bit transmitted, t =L/ R

first packet bit arrives

RTT —last packet bit arrives, send ACK

ACK arrives, send next]
packet, t=RTT+L/R

What is U4, Ulilization — fraction of time link busy sending?

Assume: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet

Performance of rdt3.0

A rdt3.0 works, but performance stinks
0 Example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

~_ L (packet length in bits) _ 8kb/pkt
transmit = R (transmission rate, bps) ~ 10**9 b/sec

U L /R 008

sender pTT.| /R 30.008

= 8 microsec

= 0.00027

o 1KB pkt every 30 msec -> 33kB/sec throughput over 1 Gbps link
o hetwork protocol limits use of physical resources !

A Summary of Questions

a How to improve the performance of rdt3.0?

Q What if there are reordering and
duplication?

a How to determine the “right” timeout
value?

10

Sliding Window Protocols: Pipelining

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged pkts
o range of sequence numbers must be increased
o buffering at sender and/or receiver

<+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

11

Pipelining: Increased Utilization

S

first packet bit transmitted, t = 0

last bit transmitted, t=L/ R 1

RTT

ACK arrives, send next,

packet, t=RTT+L/R

U

[.
ender receiver

3*L/R .024

Sender': RTT"' L / R B 30.008

first packet bit arrives

last packet bit arrives, send ACK

last bit of 2"d packet arrives, send ACK
last bit of 37 packet arrives, send ACK

increase utilization
by a factor of 3!

/

= 0.0008

Question: a rule-of-thumb window size?

12

Realizing Sliding Window: Go-Back-n

Sender:
Q k-bit seq # in pkt header
Q “window” of up to W, consecutive unack’ ed pkts allowed

send_base hexfsegnum dlready sable. nof
i ¢ ack’ed I yet sent
JARARLCED AT I00000D | semmsra] s
+ __ window size —*%
\WY%

O ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”

o hote: ACK(n) could mean two things: I have received upto and
include n, or I am waiting for n

QO timer for the packet at base
Q timeout(n): retransmit pkt n and all higher seq # pkts in window

13

GBN: Sender FSM

rdt_send(data)

nextseqnum < base+W) {

sndpkt[nextseqnum] = make_pkt(nextsegnum,data,chksum)
udt_send(sndpkt[nextseqgnum])

if (base == nextsegnum) start_timer

nextsegnum++
} else
A block sender

.
’0

base=1

nextseqnum=1 timeout

start_timer
3 udt_send(sndpkt[base])
udt_send(sndpkt[base+1])

udt_send(sndpkt[nextseqgnum-1])

'0

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

if (new packets ACKed) {
stmcioss IIIIII IIIIIIH[IHHHI]H

if (more packets waiting)
send more packets - Wlndow size—4

} N
if (base == nextseqnum)
stop_timer

else
start_timer for the packet at new base

send_ base nexfseqn um

GBN: Receiver FSM

udt_send(sndpkt) rdt_rcv(rcvpkt)

T~ && notcurrupt(rcvpkt)

A T~ a - && hassegnum(rcvpkt,expectedseqnum)
= -

expectedsegnum=1 extract(rcvpkt,data)

sndpkt = deliver_data(data)

make_pkt(expectedsegnum,ACK,chksum) sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)

expectedsegnum-++

Only state: expectedseqgnum

a out-of-order pkt:
o discard (don’ t buffer) -> no receiver buffering!
o re-ACK pkt with highest in-order seq #
o may generate duplicate ACKs

15

GBN in
Action

send pki0
send Pkt

send pkiZ

send pkt3
(wait)

window
size=4 ->

rcv ACKO
send pkt4

rcvy ACKT

—pktZ timeout
send pkt2
send pkt3
send pkt4
send pkto

sender

receiver

\
\(l&ss)

A\

send pkts \

—
~

rcv pkto
send ACKO

rcv Pkrl
send ACK

rcv ki3, discard
send ACKI

rcv pktd, discard
send ACK]

rcv pktd, discard
seng ACK

rcv pkt2, deliver

send ACK?
rcv pkt3, deliver

send ACK3

16

Analysis: Efficiency of Go-Back-n
Q Assume window size W
0 Assume each packet is lost with probability p

3 On average, how many packets do we send for
each data packet received?

17

Selective Repeat

d Sender window
o Window size W: W consecutive unACKed seq #’ s

Q Receiver individually acknowledges correctly
received pkts

o buffers out-of-order pkts, for eventual in-order
delivery to upper layer

o ACK(n) means received packet with seq# n only
o buffer size at receiver: window size

0O Sender only resends pkts for which ACK not
received
o sender timer for each unACKed pkt

18

Selective Repeat: Sender, Receiver Windows

send_base hextsegnum already Usable. not
L ¢ ack’ed yet sent
T | s e
L _ window size —2
W

(a) sender view of sequence numbers

out of order

acceptable
(buffered) but — (\ithin window)
already ack’ed

ﬂﬂﬂﬂﬂﬂﬂﬂﬂl||||||||||||||]|]|] |ogecregaet [o

t _ window size—#4

t w

rcv_base

(b) receiver view of sequence numbers

19

—sender

Selective Repeat

data from above :

0 unACKed packets is less than
window size W, send.;
otherwise block app.

timeout(n):

O resend pkt n, restart timer
ACK(n) in [sendbase sendbase+W-11:
O mark pkt n as received

O update sendbase to the first
packet unACKed

— receiver

ka nin [rcvbase, rcvbase+W-1]
0 send ACK(n)

Q if (out-of-order)
mark and buffer pkt n
else /*in-order™/

deliver any in-order
packets

otherwise:
0 ighore

20

Selective Repeat in Action

pktl =ent

0123456783 ﬂq_hhﬂﬁ__hhﬁﬁq__‘“"‘pktD rowd, delivered, ACED sent

pktl sent 0f1 2 3 4|56 7 809
0123445867853 pktl rovd, delivered. ACKL sent

pkt2 =ent 1] 16 7 a9
— [0 123la56 789 M

{loss)
pktd =ent, window full

0123456783 pktd rovd., uffered. ACEI sent
D12 34 65 7 89

ACKD rowd., pktd ==nt

oL 2 3 456 7 89
pktd rowvd., buffered. ACK4 =zent

ACKl rowd, pkth =ent 012 3 4 56 7 3 9

01[2 3 45]67 89

—— plt2 TIMEQUT, plkt2 resent
pkt? rowd, pkt?. pktd plktd, pkth

0Di(2 2 4 5| 7 8 9
delivered. ACKZ sent

ACKZ rowd, nothing sent 012345k 789
nif(z 2 4 5| 7 8 9

pltt rovd, ufifered, ACKELS =ent
0 1|2 3 4 5|6 7 829

21

Discussion: Efficiency of Selective Repeat

d Assume window size W

O Assume each packet is lost with probability
P

Q On average, how many packets do we send
for each data packet received?

22

Selective Repeat:

Seq# Ambiguity

Example:
Q seq#'s:0,1,2,3
O window size=3

Q Error: incorrectly

passes duplicate data

as new.

Sender window
(after receipt)

0123012

0123012

0123012

timeout
retransmit pkt0

0123012

Sender window
(after receipt)

0123012

0123012

0123012

0123012

0123012

pktO

pktl

pkt2

N

pkt0

NSNS

pkt0

v

pktl

pkt2

A

pkt3

pkt0

JL

/

Receiver window
(after receipt)

ACKO 012 3012

ACKI 0123012

ACK2Z 0123012

receive packet
with seq number 0

Receiver window
(after receipt)

ACKO 0123012

ACK1 0123012

ACK2 0123012

receive packet
with seq number 0

23

State Invariant:

Window Location

0 Go-back-n (GBN)

_

sender window

receiver window

0 Selective repeat (SR)

I

sender window

receiver window

24

Window Location

O Go-back-n (GBN)

_

Q: what relationship
between seq # size and
window size?

sender window

>

receiver window

0 Selective repeat (SR)

I

sender window

receiver window

25

—sender

Selective Repeat

data from above :

0 unACKed packets is less than
window size W, send;
otherwise block app.

timeout(n):

O resend pkt n, restart timer

AC K(n) In [sendbase,sendbase+W-1];

O mark pkt n as received

O update sendbase to the first
packet unACKed

— receiver

ka nin [rcvbase, rcvbase+W-1]
0 send ACK(n)
Q if (out-of-order)
mark and buffer pkt n
else /*in-order™/

deliver any in-order
packets

pkt n in [rcvbase-W, rcvbase-1]
O send ACK(n)

otherwise:
QO ighore

26

Sliding Window Protocols:

Go-back-n and Selective Repeat

Go-back-n

Selective Repeat

data bandwidth: sender
to receiver

(avg. number of times a
pkt is transmitted)

Less efficient

1-p+pw
1-p

More efficient

I-p

ACK bandwidth
(receiver to sender)

More efficient

Less efficient

Relationship between M (the

number of seq#) and W M > W M > ZW
(window size)

Buffer size at 1 W
receiver

Complexity Simpler More complex

p: the loss rate of a packet; M: number of seq# (e.g., 3 bit M = §); W: window size

27

Qutline

d Admin and Recap

a Reliable data transfer

o perfect channel

o channel with bit errors

o Channel with bit errors and losses

o sliding window: reliability with throughput
> TCP reliability

29

TCP: Overview rrcs: 793 1122, 1323, 2018, 2581

Q Point-to-point reliability: one sender, one receiver

A Flow controlled and congestion controlled

30

Evolution of TCP

1984
Nagel’s algorithm 1987 1990
1975 toreduce overhead Karn’s algorithm
of small packets; to better estimate fast A)
Three-way handshake predicts congestion round-trip time delayed ACK's
Ray Tomlinson collapse —
In SIGCOMM 75 1988
Van Jacobson’s
1083 algorithms
BSD Unix 4.2 1986 slow stEll ,
1974 supports TCP/IP Congestion congestion
TCP described by collapse avﬂldancg, fast
Vint Cerf, Bob Kahn 1st observed retransmit (all
1981 : .
In IEEE Trans Comm in
REC a8 701 4.3BSD Tahoe)
SIGCOMM 88

----ll--
1975 1980 1985 1990

Source: http://webcourse.cs.technion.ac.il/236341/Winter2015-2016/ho/WCFiles/Tutorial 10.pdf

31

Evolution of TCP

NewReno
modified fast
recovery
SACK TCP

1993 1994
TCP Vegas(not ECN 1996
implemented) Explicit Improving TCP
real congestion Congestion startup
avoidance Notification (Hoe)
(Brakmo etal) (Floyd)
*_ EEEEEEEEEN] é
1993 1994 1996 —

Source: http://webcourse.cs.technion.ac.il/236341/Winter2015-2016/ho/WCFiles/Tutorial 10.pdf

32

TCP Reliable Data Transfer

Q Connection-oriented:

o connection management

- setup (exchange of
control msgs) init’s
sender, receiver state
before data exchange

close

Q Full duplex data:

o bi-directional data flow
In same conhection

socket
door —

TCP
send buffer

Q A sliding window protocol
o a combination of go-back-n
and selective repeat:
+ send & receive buffers
- cumulative acks

 TCP uses a single
retransmission timer

* do not retransmit all
packets upon timeout

socket
door

receive buffer

[Segment] —» ()

33

TCP Segment Structure

32 bits

URG: urgent data
(generally not used)™x

source port # | dest port #

ACK: ACK# X /sequence- ndmber
valid \owedgzﬁwen’r number
PSH: push data now nead Tetd AP R|SIF| rcvr window size

(generally not used)/

ﬁ urgent data

RST, SYN, FIN:— |
connection

m
7//ons (variable length)

management
(reseft, setup
teardown
commands
Also in UDP

Z

application
data
(variable length)

counting

by bytes

of data

(not segmentsl)

flow control

34

Qutline

d Admin and Recap

Q Reliable data transfer

o perfect channel

o channel with bit errors

o channel with bit errors and losses

o sliding window: reliability with throughput
A TCP reliability

> data seq#, ack, buffering

35

Flow Control

d receive side of a
conhection has a
receive buffer:

k— RevWindow —f

7

data from
IP

7
7, / 77
'|l— RevBuffer —I‘*

O app process may be
slow at reading from

buffer

-flow control
sender won’ t overflow
receiver’ s buffer by
transmitting too much,

too fast

application

/ 7 IR

0 speed-matching

service: matching the
send rate to the
receiving app’ s drain
rate

36

TCP Flow Control: How it Works

k— RevWindow —f

g
/ //_..

7
77 /
b—— RevBuffr ————#

data from

a spare room in buffer

= RcvWindow

source port #

dest port #

application

sequence number

acknowledgement number

head
len

"ot lAPRISIF| reve window size

used

checksum

ptr urgent data

Options (variable length)

application
data
(variable length)

37

TCP Seq. # s and ACKs

Seq. # s:
0 byte stream
“number” of first

q=4
) =79 dat
. ’ ‘C’ N‘
byte in segment’ s host ACKs

data . receipt of
ACKs: 43, 0382 &~ ‘C’, echoeq
o K= back ‘C’
0 seq # of next byte sear122 o
expected from
other side host ACKs

receipt

QO cumulative ACK in of echoed 9543, Ack=g,
0 selective ACK in

options
simple telnet scenario

time

38

TCP Send/Ack Optimizations

A TCP includes many tune/optimizations, e.g.,

o the "small-packet problem”: sender sends a lot of
small packets (e.g., telnet one char at a time)

- Nagle's algorithm: do not send data if there is small
amount of data in send buffer and there is an unack'd
segment

o the "ack inefficiency” problem: receiver sends too
many ACKs, no chance of combing ACK with data
+ Delayed ack to reduce # of ACKs/combine ACK with
reply

39

TCP Receiver ACK Generation [RFc 1122, RFC 2581]

Event at Receiver

TCP Receiver Action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Immediately send single cumulative
ACK, ACKing both in-order segments

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Arrival of segment that
partially or completely fills gap

Immediate send ACK, provided that
segment starts at lower end of gap

40

Qutline

d Admin and Recap

Q Reliable data transfer

o perfect channel

o channel with bit errors

o channel with bit errors and losses

o sliding window: reliability with throughput
A TCP reliability

o data seq#, ack, buffering

> timeout realization

41

TCP Reliable Data Transfer

3 Basic structure: sliding window protocol
3 Remaining issue: How to determine the
“right” parameters?
o timeout value?
o sliding window size?

42

History

d Key parameters for TCP in mid-1980s
o fixed window size W
o timeout value = 2 RTT

A Network collapse in the mid-1980s
o UCB <-> LBL throughput dropped by 1000X |

A The intuition was that the collapse was
caused by wrong parameters...

43

Timeout: Cost of Timeout Param

Why is good timeout value important?
3 too short
o premature timeout
o unnecessary retransmissions; many duplicates

a too long
o slow reaction to segment loss

Q: Is 1t possible to set Timeout as a constant?

Q: Any problem w/ the early approach: Timeout =2 RTT

44

Setting Timeout

P

Q Ideall , we set timeout = RTT,
bu‘r T is not a fixed value

usmg the average of RTT will generate freq.
many timeouts due to network variations RTT

O Possibility: using the average/median of RTT
O Issue: this will generate many timeouts due to network variations

Solution:

0 Set Timeout RTO = avg + ' safety margin” based on variation

TCP approach:

Timeout = EstRTT + 4 * DevRTT

45

Compute EstRTT and DevRTT

Q Exponential weighted moving average (EWMA)
o influence of past sample decreases exponentially fast

EstRTT = (l-alpha) *EstRTT + alpha*SampleRTT

- SampleRTT: measured time
from segment transmission
until ACK receipt

- typical value: alpha =0.125

DevRTT = (l-beta) *DevRTT + beta|SampleRTT-EstRTT |

(typically, beta = 0.25)

46

An Example TCP Session

6 -
54
4. TCP's calculated RTO
RTT/RTO il
(seconds)
2=
measured RKTT
1=
l:I'||II1III'I|II1II:Illbllllllll-lll-llll'
0 5 10 15 20 25 30 35

time (seconds)

47

Fast Retransmit

a Issue: Timeout period often relatively long:
o long delay before resending lost packet

0 Question: Can we detect loss faster than RTT?

0O Detect lost segments via a If sender receives 3

duplicate ACKs ACKs for the same
o sender often sends many data, it supposes that
segments back-to-back Segmenf after ACKed
o if segment is lost, there will data was lost:

likely be many duplicate ACKs - resend segment before

timer expires

48

Triple Duplicate Ack

Packets
EHIEIEIREGEIE

Acknowledgements (waiting seq#)

2] [3] 4] 4% 5

Fast Retransmit:

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer

}...

else {
increment count of dup ACKs received for y
if (count of dup ACKs received fory = 3) {
resend segment with sequence numbery

\

/
a duplicate ACK for \

already ACKed segment fast retransmit

00 sendbase = initial_sequence number agreed by TWH
01 nextseqnum = initial_sequence number by TWH

02 loop (forever){

03 switch(event)

04 event: data received from application above

05 if (window allows send)
| Z !l S . 06 create TCP segment with sequence number nextseqgnum
N 06 if (no timer) start timer

. 07 pass segment to IP
rlel la b I e 08 nextsegqnum = nextsegnum + length(data)
else put packet in buffer
09 event: timer timeout for sendbase

d a‘ra 10 retransmit segment
11

compute new timeout interval

12 restart timer
'1' r'a n Sf e r' 13 event: ACK received, with ACK field value of y
14 if (y > sendbase) { /* cumulative ACK of all dataup toy */
15 cancel the timer for sendbase
16 sendbase =y
. o 17 if (no timer and packet pending) start timer for new sendbase

Slmpllfled 17 while (there are segments and window allow)

TCP 12 } sent a segment;

sender 19 else { /* y==sendbase, duplicate ACK for already ACKed segment */
20 increment number of duplicate ACKs received for y
21 if (number of duplicate ACKS received fory == 3) {
22 [* TCP fast retransmit */
23 resend segment with sequence numbery
24 restart timer for segment y
25 }

26 } /" end of loop forever */

Qutline

d Admin and Recap

3 Reliable data transfer

o perfect channel

o channel with bit errors

o channel with bit errors and losses

o sliding window: reliability with throughput
A TCP reliability

o data seq#, ack, buffering

o timeout realization

> connection management

52

Why Connection Setup/When to

Accept (Safely Deliver) First Packet?

IIL.‘) sender r'ecelver'

53

Why Connection Setup/When to
Accep‘r (Safely Dellver) FursT Packet?

44

Transport "Safe-Setup” Principle

a A general safety principle for a receiver R
to accept a message from a sender S is the
general "authentication” principle, which

___consists of two conditions:

Transport authentication principle:
- [pl] Receiver can be sure that what Sender says is fresh
- [p2] Receiver receives something that only Sender can say

We first assume a secure setting: no malicious attacks.

Exercise: Techniques to allow a receiver to check for freshness
(e.g., add a time stamp)?

55

Generic Challenge-Response
Structure Checking Freshness

deliver

56

Three Way Handshake (TWH) [Tomlinson 1975]

notify initial seq#. Accept?

think of y as a challenge

DAT4 accept data only after
\%‘ verified y 1s bounced back
v x 18 the 1it. seq

SYN: indicates connection setup

57

Make "Challenge y" Robust

Q To avoid that "SYNC ACK y" comes from
reordering and duplication

o for each connection (sender-receiver pair), ensuring that
two identically numbered packets are never outstanding
at the same time

* network bounds the life time of each packet

- a sender will not reuse a seq# before it is sure that all packets
with the seq# are purged from the network

* seq. humber space should be large enough to not limit
Transmission rate

Q Increasingly move to cryptographic challenge and
response

60

Connhection Close

Q Why connection close?

o so that each side can
release resource and
remove state about the
connection (do not want
dangling socket)

init. close
release
resource?

close
release
resource?

close
release

resource?

61

General Case: The Two-Army Problem

White army

The gray (blue) armies need to agree on whether or not they will attack the white army. They
achieve agreement by sending messengers to the other side. If they both agree, attack; otherwise,

no. Note that a messenger can be captured!
62

Time Wait
0 Generic technique: Timeout to “solve” infeasible

problem

o Instead of message-driven state transition, use a timeout
based transition; use timeout to handle error cases

@ client server@
. . Ia
init. close [~am gop,, Are o,
release done tog-
\
ool close
Jone 12 release
\ 2" 9
resource?
close

resource?
release

resource?

:

Time Wait Design Options

Design 1 (initiator time wait)

Time = n x timeout
Time to retry FIN
after each timeout

All states
removed

Close after receive FIN
All states removed

Close after
first ACK
All states ren

Design 2 (receiver time wait)

/ - | Time to
NeS retransmit

oved

ACK

1

All states removed

64

(Start)

CLOSED

SYN
SENT

ESTABLSIHE]]

0 CONNECT/SYN
Yonetstat -t -a CLOSED N
. CLOSE/- N
1
LISTEN/~ | | CLOSE/~
SYN/SYN + ACK !

LTI LISTEN

|

L RST/— j k SEND/SYN 1

SYN = SYN
RC\{D - SYN/SYN + ACK (simultaneous open) SENT

|

1

i (Data transfer stake)

\ ACK/—

‘-. —————————————————— i ESTABL'SHED a . /

SYN + ACK/ACK
CLOSE/FIN : (Step 3 of the three-way handshake)
1
CLOSE/FIN l\ FIN/ACK

i

ESTABLSIHED

{ (Active close) (Passive \‘. Close)
r—-———————— |- - - -"-~" -~ -~ -~ -~"~-~"—-—"=-""-"""""¥"="="”"¥""¥"="¥"¥"°"“"°"¥”"”"?V=---“—"“"¥"¥"¥"7"¥7//"""™ a - ———————
| | | I | FIN
i ¥ FIN/ACK i ! CLTOSE i WAIT 1
| FIN - | | !
CLOSING |
i WAIT 1 i ! WAIT i
| i [i
| ACK/- ACK/— | | CLOSE/FIN|
I ¥ ; i : : ¥ |
. FIN + ACK/ACK . | |
| FIN = TIMED | | lfgz | wanta
i |
| WAIT 2 —ACK WAIT | | . B
N T I I war
| (Timeout) i
ACK/— J
(o1 = o O ——
65

(Go back to start)

<

9

SYn

WACE

CK

f

FIN

NS

W

ACk

ICLOSED
LISTEN

SYN
RCVD

ESTABISIHED

v

ESTABLSIHED

CLOSE
WAIT

LAST
ACK

TCP Connection Management

TCP lifecycle: init SYN/FIN

wait 30 seconds

CLOSED

TIME_WAIT

A

receive FIN
send ACK

FIN_WAIT_2

receive ACK
send nothing

6

client application
initiates a TCP connection

send SYN

SYN_SENT

h 4

receive SYN & ACK
send ACK

ESTABLISHED

FIN_WAIT_1

client application
initiates close connection

send FIN

6http://dsd.lbl. gov/TCP-tuning/ip-sysctl-2.6.txt

CLOSED

SYN
SENT

ESTABLSIHE]

ESTABLSIHED

FIN
WAIT 1

FIN
WAIT 2

TIME
WAIT

&
<

SYNn

SOUREE

CK

A

FiN

A\

ACk

CLOSED

SYN
RCVD

y

ESTABLSIHED

CLOSE
WAIT

LAST
ACK

67

TCP Connection Management

TCP lifecycle: wait for
SYN/FIN

receive ACK
send nothing

[

CLOSED

LAST_ACK

A

send FIN

CLOSE_WAIT

receive FIN
send ACK

server application
creates a listen socket

LISTEN

receive SYN
send SYN & ACK

h 4

SYN_RCVD

ESTABLISHED

receive ACK
send nothing

CLOSED

SYN
SENT

ESTABLSIHE]

ESTABLSIHED

FIN
WAIT 1

FIN
WAIT 2

TIME
WAIT

&
<

SYNn

SOUREE

CK

A

FiN

A\

ACk

CLOSED

SYN
RCVD

y

ESTABLSIHED

CLOSE
WAIT

LAST
ACK

68

A Summary of Questions

A Basic structure: sliding window protocols

d How to determine the “right” parameters?
v Tfimeout: mean + variation
o sliding window size?

	Network Transport Layer:�Sliding Window, TCP
	Outline
	Admin
	Recap: Reliable Data Transfer Context
	Recap: Reliable Data Transfer Setting
	rdt3.0: Channels with Errors and Loss
	rdt3.0 Sender
	rdt3.0: Stop-and-Wait Performance
	Performance of rdt3.0
	Slide 10
	Sliding Window Protocols: Pipelining
	Slide 12
	Realizing Sliding Window: Go-Back-n
	Slide 14
	Slide 15
	GBN in�Action
	Analysis: Efficiency of Go-Back-n
	Selective Repeat
	Selective Repeat: Sender, Receiver Windows
	Selective Repeat
	Slide 21
	Slide 22
	Selective Repeat: �Seq# Ambiguity
	Slide 24
	Slide 25
	Selective Repeat
	Slide 27
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	TCP Reliable Data Transfer
	TCP Segment Structure
	Slide 35
	Flow Control
	TCP Flow Control: How it Works
	Slide 38
	TCP Send/Ack Optimizations
	TCP Receiver ACK Generation [RFC 1122, RFC 2581]
	Slide 41
	Slide 42
	Slide 43
	Timeout: Cost of Timeout Param
	Setting Timeout
	Compute EstRTT and DevRTT
	An Example TCP Session
	Fast Retransmit
	Slide 49
	Fast Retransmit:
	TCP: reliable data transfer
	Slide 52
	Why Connection Setup/When to Accept (Safely Deliver) First Packet?
	Why Connection Setup/When to Accept (Safely Deliver) First Packet?
	Transport “Safe-Setup” Principle
	Generic Challenge-Response Structure Checking Freshness
	Three Way Handshake (TWH) [Tomlinson 1975]
	Make “Challenge y” Robust
	Connection Close
	General Case: The Two-Army Problem
	Time_Wait
	Time_Wait Design Options
	Slide 65
	TCP Connection Management
	TCP Connection Management
	Slide 68

