Last Update: Dec. 6, 2025

CT Assignment 9 (PS9): Data Type and Digital Audio

The goals of this assignment are to learn how to create user-defined data types in Java and to learn about digital audio.

Due: 11:55 PM, Dec. 14, 2025

Part 0: Program Analysis (Offline Learning)

Watch this video on encapsulation (public and private access modifiers). (pptx, pdf)
Watch this Online document (Sec. 1.5) on how to use the Standard Audio library.

Part 1. Understanding the Problem

Write a program to simulate plucking a guitar string using the Karplus-Strong algorithm. This algorithm played a seminal role in the emergence of physically modeled sound synthesis (where a physical description of a musical instrument is used to synthesize sound electronically).

Digital audio..

Simulate the plucking of a guitar string. When a guitar string is plucked, the string vibrates and creates sound. The length of the string determines its fundamental frequency of vibration. We model a guitar string by sampling its displacement (a real number between -1/2 and +1/2) at N equally spaced points (in time), where N equals the sampling rate (44,100) divided by the fundamental frequency (rounding the quotient to the nearest integer).

Why it works? The two primary components that make the Karplus-Strong algorithm work are the ring buffer feedback mechanism and the averaging operation.

From a mathematical physics viewpoint, the Karplus-Strong algorithm approximately solves the 1D wave equation, which describes the transverse motion of the string as a function of time.

Ring buffer. Your first task is to create a data type to model the ring buffer. Write a class named RingBuffer that implements the following API:

public class RingBuffer
-----------------------------------------------------------------------------------------
        RingBuffer(int capacity)  // create an empty ring buffer, with given max capacity
    int size()                    // return number of items currently in the buffer
boolean isEmpty()                 // is the buffer empty (size equals zero)?
boolean isFull()                  // is the buffer full  (size equals capacity)?
   void enqueue(double x)         // add item x to the end
 double dequeue()                 // delete and return item from the front
 double peek()                    // return (but do not delete) item from the front
Since the ring buffer has a known maximum capacity, implement it using a double array of that length. For efficiency, use cyclic wrap-around: Maintain one integer instance variable first that stores the index of the least recently inserted item; maintain a second integer instance variable last that stores the index one beyond the most recently inserted item. To insert an item, put it at index last and increment last. To remove an item, take it from index first and increment first. When either index equals capacity, make it wrap-around by changing the index to 0.

Implement RingBuffer to throw an exception if the client attempts to dequeue() or peek() from an empty buffer or enqueue() into a full buffer.

Ring buffer

Guitar string. Next, create a data type to model a vibrating guitar string. Write a class named GuitarString that implements the following API:

public class GuitarString
------------------------------------------------------------------------------------------------------------------------
       GuitarString(double frequency)  // create a guitar string of the given frequency, using a sampling rate of 44,100
       GuitarString(double[] init)     // create a guitar string whose size and initial values are given by the array
  void pluck()                         // set the buffer to white noise
  void tic()                           // advance the simulation one time step
double sample()                        // return the current sample
   int time()                          // return number of tics

Interactive guitar player. GuitarHeroLite.java is a sample GuitarString client that plays the guitar in real-time, using the keyboard to input notes. When the user types the lowercase letter 'a' or 'c', the program plucks the corresponding string. Since the combined result of several sound waves is the superposition of the individual sound waves, we play the sum of all string samples.


public class GuitarHeroLite {

    public static void main(String[] args) {
	int    DRAW_SAMPLE_RATE = 20;    // draw at a rate of 20/sec
	int    AUDIO_PER_DRAW   = StdAudio.SAMPLE_RATE / DRAW_SAMPLE_RATE;

	int    PLAY_TIME        = 10;    // target 60 seconds display window
	int    XWIDTH           = DRAW_SAMPLE_RATE * PLAY_TIME;

        // Create two guitar strings, for concert A and C
        double CONCERT_A = 440.0;
        double CONCERT_C = CONCERT_A * Math.pow(2, 3.0/12.0);
        GuitarString stringA = new GuitarString(CONCERT_A);
        GuitarString stringC = new GuitarString(CONCERT_C);

        // Set up parameters for visualization
	StdDraw.setCanvasSize(768, 256);
	StdDraw.setPenColor(StdDraw.RED);
	StdDraw.setXscale(0, XWIDTH);
	StdDraw.setYscale(-1, 1);

	// fence post
	double xprev = 0, yprev = 0;

        // the main input loop
        while (true) {

            // check if the user has typed a key, and, if so, process it
            if (StdDraw.hasNextKeyTyped()) {
 
                // the user types this character
                char key = StdDraw.nextKeyTyped();

                // pluck the corresponding string
                if (key == 'a') { stringA.pluck(); }
                if (key == 'c') { stringC.pluck(); }
            }

	    // compute the superposition of the samples for duration
	    double sample = stringA.sample() + stringC.sample();

	    // send the result to standard audio
	    StdAudio.play(sample);

	    // advance the simulation of each guitar string by one step
	    stringA.tic();
	    stringC.tic();

	    // Decide if we need to draw. 
	    //   Audio sample rate is StdAudio.SAMPLE_RATE per second
	    //   Draw sample rate is DRAW_SAMPLE_RATE
	    //   Hence, we draw every StdAudio.SAMPLE_RATE / DRAW_SAMPLE_RATE
	    if (stringA.time() % AUDIO_PER_DRAW == 0) {
		StdDraw.line(xprev, yprev, xprev+1, sample);
		xprev ++;
		yprev = sample;
		// XXX check if wrapped around
	    } // end of if

	} // end of while

    } // end of main

} // end of class

Write a program GuitarHero.java that is similar to GuitarHeroLite, but supports a total of 37 notes on the chromatic scale from 110Hz to 880Hz. In general, make the ith character of the string
String keyboard = "q2we4r5ty7u8i9op-[=zxdcfvgbnjmk,.;/' ";
This keyboard arrangement imitates a piano keyboard: The "white keys" are on the qwerty and zxcv rows and the "black keys" on the 12345 and asdf rows of the keyboard.
Piano keyboard
The ith character of the string corresponds to a frequency of 440 × 2(i - 24) / 12, so that the character 'q' is 110Hz, 'i' is 220Hz, 'v' is 440Hz, and ' ' is 880Hz. Don't even think of including 37 individual GuitarString variables or a 37-way if statement! Instead, create an array of 37 GuitarString objects and use keyboard.indexOf(key) to figure out which key was typed. Make sure your program does not crash if a key is played that is not one of your 37 notes.

Note that GuitarHeroLite displays sound wave, but will not wrap around. In other words, after a while you can no longer see the sound wave. You will need to wrap the wave around, by calling the clear() method of StdDraw when the wave has reached the boundary.


Part 2. Carrying Out the Actual Work

These are purely suggestions for how you might make progress. You do not have to follow these steps.

Testing. Be sure to thoroughly test each piece of your code as you write it. We offer some suggestions below.

Part 3. Submitting Your Assignment

All you need to submit electronically for PS9 are the RingBuffer.java file, the GuitarString.java file, the GuitarHero.java file, and the README.txt file. Please use the template of README.txt.

    //*******************************************************************
    //
    //   File: FileName.java          Assignment No.: 9
    //
    //   Author: <your name>      Email: <your email>
    //
    //   Class: ClassName
    // 
    //   Time spent on this problem: 
    //   --------------------
    //      Please give a description about your design. 
    //
    //
    //   Report file name:
    //*******************************************************************

The submission repository for ps9 is https://gitee.com/simmonsong/ct-xmuf25-ps9.

Please follow the instructions in Assignments Submission to submit your assignments.

Git introduction is a help document for git utilization..

Good luck and enjoy!

Some references:


Frequently Asked Questions


Copyright © 1999–2013, Andrew Appel, Jeff Bernstein, Maia Ginsburg, Ken Steiglitz, Ge Wang, and Kevin Wayne. 2020, Yale CPSC 112 Richard Y Yang. [Adapted and modified for use at XMU CT Fall 2025]