
Introduction to
Computational Thinking

This deck of slides are heavily based on cs112 at Yale University and cs101 at UCAS, respectively,
by courtesy of Dr. Y. Richard Yang and Dr. Zhiwei Xu.

Lecture #2:
Computational Thinking Overview &

Java Program Structure

Qiao Xiang, Qingyu Song
https://sngroup.org.cn/courses/ct-

xmuf25/index.shtml
10/11/2025

2

3

Outline

q Admin. and recap
q Computational process and development
q Java: the programming language
q Programming levels
q Java programming steps
q Java program structure

Admin

q pset 1 to be posted

4

5

Questions for You

q Please return the class survey at the end
of the class

Recap

q Computer science (CS) is the study of
computational processes
o for problem solving and creative expression
o that are correct, smart, and practical

q CS combines
o logic, algorithmic, systems thinking, and
o network thinking

q Computational thinking (CT) is the way of
thinking underlying the computer science
discipline

6

q Programming is to apply algorithmic
thinking to design computer programs to
solve problems
o Describe each step in a computer language

• Algorithms represent imperative knowledge vs
declarative knowledge

o Figure out why the computer did not follow the
instructions as you expected

Recap

7

8

Outline

q Admin. and recap
Ø Computational process and development

Computational process
q A step-by-step process of information transformation

o A sequence of symbol manipulation steps
o Can be done manually or automatically

q Compute Fibonacci number F(10)
• Given definition

F(0)=0, F(1)=1,
F(n)=F(n-1)+F(n-2)
when n>1,
Find F(10).

q Manual
• Tedious
• Impractical for large n

q Computer
• Automatic after

encoding into cyberspace
• Practical even for

n = 1 billion
9

2. ABC features
q Automatic execution
q Bit accuracy
q Constructive abstraction

10

Automatic execution

q Computational processes are automatically executed step-
by-step on computers.

q Automatic execution is common when looking inside or
from outside

• Step-by-step mechanic automatic execution of digital symbol
manipulation is the most fundamental characteristic of
computational thinking, both without and within.

• It underlies all the other understandings.
• CS studies logic that is automatic executable logic, algorithms

that are automatic executed algorithms, abstractions that are
automatic executed abstractions.

q It partially answers the question
• Why and how trillions of instructions can be automatically executed in

a fraction of a second, sometimes across the globe, to produce
correct computational results?

11

Bit accuracy

q Other sciences pursue their own scientific
rigor

• Experiments results are statistically significant when
the p-value is less than 0.05

q Computer science uses binary values of 0s
and 1s
o One binary digit is called a bit

q Computer science pursues bit accuracy
• A computational process is accurate and precise up to

every bit
• Any practical computer has finite memory

– Cannot represent real numbers of arbitrary precision

12

Constructive abstraction
q Computer science is about digital abstractions

• constructive, automatically executed abstractions of information
transformation

q Three layers of meaning
• Abstraction from concrete instances to the general concept
• Constructive: a step-by-step integration of more primitive symbols

and operations
• Smart construction, not ad hoc, arbitrary actions or processes

– Although may use brute-force actions (e.g., exhaustive enumeration) and
seemingly arbitrary random operations (e.g., randomly picking a number)

13

How to develop a computational
process?

14

Data + Program

What are Data & Program?
q Data is a group of bits.

q A bit is a binary digit with a value of 0 or 1.

q A digital symbol is any notation that is representable as one
or more bits, to denote any concrete or abstract entity.

q Manipulation is a sequence of operation steps on digital
symbols, where the length can be one or many.

q A program is an algorithm written in a computer language.

q Code is a fraction (segment) of a program.

15

What is a digital symbol

q A notation
Ø Representable as one or more bits

• Discrete, not continuous
• Finite, not infinite many bits

Ø Denoting any concrete or abstract entity
• Number, character, string, image, audio, video
• Idea, program code, human genome sequence

q Manipulation is
Ø Any sequence of operation on symbols

• Find (look up), read, write, transport (send), modify

16
https://www.ncbi.nlm.nih.gov/nuccore/LR991581

A WeChat QR code

Data are digital symbols

q Analog vs. digital values
Ø Analog: Continuous
Ø Digital: Discrete

q Binary-decimal conversion

q Representations
Ø ASCII： American Standard Code for Information

Interchange
Ø uses 8 bits to encode English characters

17

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12

Temperature °C

Month

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Temperature
°C

Decimal 0 0 20 20 30 30 30 30 30 20 10 0

Binary 00 00 10 10 11 11 11 11 11 10 01 00

You will learn details in another course!

Program:Digital symbol manipulation

q Computer science studies computational processes

q A computational process is a process of information
transformation,
which is a sequence of steps of digital symbol manipulation
Ø Process = a sequence of steps
Ø Information transformation = digital symbol manipulation

Process of information transformation

a sequence of steps digital symbol manipulation

18

Take away

q Data as Symbols

q Programs to manipulate symbols

19

Programming Language Choices

20

21

Outline

q Admin. and recap
q Computational process and development
Ø Java: the programming language

22

Java Programming Language: Key Designers

q Bill Joy

• BSD Unix guy from UC
Berkeley

• co-founder of Sun
Microsystems (1982)

• focus on “the network is
the computer”, targeting
workstation market

• failure: focusing on
network was ahead of its
time, but missed the boat
on PC revolution

q James Gosling

• early fame as the author
of “Gosling Emacs”

– killed by open GNU emacs

• then onto Sun’s “NeWS”
windows system

– killed by open X-windows

• failure: keeping things
proprietary led to “kiss of
death”

23

Java Programming Language: History

q Joy and Gosling joined force: Sun subsidiary,
FirstPerson, Inc. (1992)
o target consumer electronics: PDAs, appliances,

phones, all with cheap infra-red kinds of networks
o need a language that’s safe, portable, secure, wired

• started working on C++--
• soon gave up hope, decided to start from scratch

o a little ahead of time (again): PDAs died with the
demise of Apple Newton

o switched to interactive TV (ITV)
• the resulting language was called “Oak”

o a little ahead of time (yet again): ITV died too
q Third time’s the charm

o the Web exploded
o Oak became Java

24

Java Features
q Java is a modern, elegant, object-oriented

programming language
• simpler than other object-oriented languages [e.g., C++]
• Java is the basis of other modern programming languages

[e.g., Microsoft C#]
q Java is (largely) portable --- write once run

everywhere
• Java supports multiple platforms (Unix, Windows, Mac),

multiple types of devices (desktops, phones, embedded
devices)

q Java has rich libraries and good support
• good multimedia, graphics packages
• good client-server and network support
• good, free Integrated Development Environments (IDE)

https://spectrum.ieee.org/top-programming-languages-2021

Language “Beauty Contest”

25

Language popularity

https://redmonk.com/sogrady/files/2025/06/lang.rank_.125.wm_.png

Language popularity

https://octoverse.github.com/2022/top-programming-languages
27

Version Year Important New Features

1.0 1996

5 2004 Generic classes, enhanced for loop, auto-boxing, enumerations

10 2018 Local-Variable Type Inference

15 2020 Dynamic class-file constants, HTTP client (standard)

20 2023 Enhancing concurrent programming and developer productivity

25 2025 Aid in the development of AI applications

Java is Still Evolving

- New features added by following the Java Community
Process
- Others extend Java to other settings: Google Android
uses Java on mobile devices

28

29

Outline

q Admin. and recap
q Computational process and development
q Java: the programming language
q Programming levels

30

Machine Language
q The “brain” of a computer is its

Central Processing Unit (CPU)

q A CPU can understand only
very basic instructions

- e.g., store a given value at a memory
location; do some arithmetic
operations; compare two values; start
to execute the instruction at another
location

q The instruction set of a CPU forms the
machine language of the CPU

q Different machines understand
different machine languages

Qualcomm S4
Nexus 4,

Samsung Galaxy

A9
iPhone 6s

MacBookPro

31

High-Level Programming Languages

celsiusTemperature = 32;

fahrenheitTemperature=
celsiusTemperature * 9 / 5 + 32;

if (fahrenheitTemperature > 100)
hot = true;

else
hot = false;

q A high-level programming
language enables a
programmer to specify, in a
high level (close to natural
language), what data a
computer will act upon, how
these data will be stored,
and what actions to take
under various
circumstances

q The syntax and grammar of
a high-level language is
independent of CPU

Example Higher-level Source Code fragment

Problem

q Language barrier
o Computers: understand

machine platform
languages---to build
efficient hardware

o Programmers: want
more readable high-
level languages---to be
more productive

32

33

Hire a Translator: Compiler
q A program written in a high-level language must be

translated into the language of a particular platform
(type of CPU and operating system) before execution

q A compiler is a program which translates source code
into a specific target platform (CPU + OS)

compiler

intel x86 +Win8source code

source
code

machine
code

Problems of Compiling to Each
Specific Computer Platform
q Multiple versions of the same software

34

35

High-level Picture

Prog 1

Prog 1; Arch 1 Prog 1; Arch n

Prog 2

Prog 2; Arch 1 Prog 2; Arch n’

C/C++

Java Virtual Machine
q To be platform independent, Java designers

introduced Java Virtual Machine (JVM), a machine
different from any physical platform, but a virtual
machine
o The language of the virtual machine is referred to as bytecode
o Thus Java actually has two programming languages

q A Java compiler translates Java source code (.java
files) into bytecode (in .class files)
o Each Java software program needs to be compiled only

once: from the Java source code to bytecode

q Other languages (e.g., Jruby, Jython, Scala) may
also compile to bytecode

36

37

Java Execution

q To execute a Java program, another piece of
software called an interpreter, translates
between bytecode and the actual machine
o an interpreter is specific to a specific platform
o the interpreter understands java bytecode, and

then issues instructions in the specific platform
for which it is written

o we also say that an interpreter provides a java
virtual machine (JVM)

38

Java Translation and Execution
Java source code

Java compiler

bytecode interpreter
for Windows

bytecode interpreter
for Android

Java bytecode

bytecode interpreter
for Mac

bytecode interpreter
for Linux

39

Comparing Traditional (e.g., C/C++)
and Java Software Development

q A developer writes a program
in C/C++

q The C/C++ source code is
generally considered
proprietary, and not released

q The developer compiles the
C/C++ program for each
platform it intends to support,
and distributes one version
for each platform
o thus each program has

multiple compiled versions
o each compiled version can run

by itself
q Platform dependency

handled by each software
developer

Traditional, e.g., C/C++
q A developer writes a program

in Java
q The Java source code is

generally considered
proprietary, and not released

q The developer compiles the
Java program to bytecode,
and distributes the bytecode
version
o thus each program has only

one compiled version
o the compiled bytecode needs

an interpreter for each
platform

q Platform dependency handled
by platform vendor

Java

40

High-level Picture

Prog 1

Prog 1; Arch 1 Prog 1; Arch n

Prog 2

Prog 2; Arch 1 Prog 2; Arch n’

Prog 1

Prog 1/bytecode

Prog 2

Prog 2/bytecode Interp; Arch 1 Interp; Arch n

C/C++

Java

41

Outline

q Admin. and recap
q Computational process and development
q Java: the programming language
q Programming levels
q Java programming steps

Recall: Java Programming Steps

42

q Programming in Java consists of 3 simple
steps

- Create and edit “Java source code” (.java files)
- Compile into “Java bytecode” (.class files)
- Execute bytecode with a “Java interpreter”

run
output

source code
compile

byte code

43

Programming in Java (Step 1): Create/Edit

q The basic way is to use a text editor
• Example editors: vim, sublime, Notepad,

TextEdit (Format/Make Plain Text) etc.
• Note: MS Word is NOT a text editor

• The key is that your .java file cannot include
any markup or stylistic formatting; just text.

• You enter your Java code following Java
Language syntax (more soon).

44

Programming in Java (Step 2): Compile

- Compile a Java program
$ javac HelloWorld.java

- Take a look to see that HelloWorld.class is generated
$ ls
HelloWorld.java HelloWorld.class

45

Programming in Java (Step 3): Execute

- Run Java interpreter
$ java HelloWorld

First Java Program

46

/*************************************
* Prints “Hello World”
* Everyone’s first Java program.
*************************************/

public class Hello {
public static void main(String[] args) {

System.out.println("Hello, world!");
}

}

Another Java Program

47

public class Hello2 {
public static void main(String[] args) {

System.out.println("Hello, world!");
System.out.println();
System.out.println("This program produces");
System.out.println("four lines of output");

}
}

49

Outline

q Admin. and recap
q Computational process and development
q Java: the programming language
q Programming levels
q Java programming steps
q Java program (syntax) structure

Java Syntax Structure: A Top-Down View

public class <class name> {
public static void main(String[] args) {

<statement>;
<statement>;
...
<statement>;

}
}

A class:
- has a name, defined in a file with same name

Convention we follow: capitalize each English word
- starts with {, and ends with }
- includes a group of methods

statement:
- a command to be executed
- end with ;

A method:
- has a name

Convention we follow: lowercase first
word, capital following

- starts with {, and ends with }
- includes a group of statements

50

The System.out.println statement

q A statement that prints a line of output on
the console.
• pronounced "print-linn”

q Two ways to use System.out.println :

• System.out.println(<string>);

Prints the given message <string> as output.

• System.out.println();

Prints a blank line of output.
51

52

Outline

q Admin. and recap
q Computational process and development
q Java: the programming language
q Programming levels
q Java programming steps
q Java program structure

o A top-down view
o A bottom-up view

53

Java Syntax: A Bottom-Up View
// Comment 1: A Java program
/* Comment 2: a long comment
*********************************/

public class Hello {
public static void main(String[] args) {

System.out.println("Hello, world!");
System.out.println();
System.out.println("This program produces");
System.out.println("four lines of output");

}
}

54

Java Syntax: A Bottom-Up View

q Basic Java syntax units
o white space and comments
o identifiers (words)
o symbols: { } “ () < > [] ; = …
o strings
o numbers

// Comment 1: A Java program
/* Comment 2: a long comment
*********************************/

public class Hello {
public static void main(String[] args) {

System.out.println("Hello, world!");
System.out.println();
System.out.println("This program produces");
System.out.println("four lines of output");

}
}

55

Syntax: White Space
q White space

o includes spaces, new line characters, tabs
o white space is used to separate other entities
o extra white space is ignored

q White space allows a Java program to be
formatted in many ways, and should be
formatted to enhance readability
o the usage of white space forms part of

programming style

56

Syntax: Comments
q comment: A note written in source code by the

programmer to describe or clarify the code.
o Comments are ignored by the compiler
o Useful for other people (and yourself!) to

understand your code

q Two types of comments in Java
• single-line comments use //…

// this comment runs to the end of the line

• multi-lines comments use /* … */
/* this is a very long

multi-line comment */

Syntax: Identifier

q Identifier: A name given to an item in a
program.

q Syntax requirement on identifier:
o must start with a letter or _ or $
o subsequent characters can be any of those or a

number
o Important: Java is case sensitive:

• Hello and hello are different identifiers

57

58

Three Types of Identifiers

1. Identifiers chosen by ourselves when writing
a program (such as HelloWorld)

2. Identifiers chosen by another programmer,
so we use the identifiers that they chose
(e.g., System, out, println, main)

public class HelloWorld
{

public static void main(String[] args)
{

System.out.println(“Hello World!”);
}

}

59

Three Types of Identifiers
3. Special identifiers called keywords or reserved words:

A keyword has a special meaning in Java.

Java reserved words: they are all lowercase!

abstract default if private this
boolean do implements protected throw
break double import public throws
byte else instanceof return transient
case extends int short try
catch final interface static void
char finally long strictfp volatile
class float native super while
const for new switch
continue goto package synchronized

Examples

qWhich of the following are legal non
reserved-word identifiers?
o Greeting1
o g
o class
o 101dalmatians
o _101dalmatians
o Hello, World
o <greeting>

60

Syntax: Strings

q string: A sequence of characters that
starts and ends with a " (quotation mark
character).

• The quotes do not appear in the output.

o Examples:
"hello"
"This is a string. It is very long!”

q Restrictions:
o May not span multiple lines

"This is not
a legal String."

61

Examples

qWhich of the following are legal
strings in Java?
o "This is a string. It’s very long!"

o "This cool string spans
two lines. "

o "It is a great thing when children cry, "I
want my mommy"! "

62

Escape Sequences

q escape sequence: A special sequence of
characters used to represent certain special
characters in a string.

\b backspace
\t tab character
\n new line character
\" quotation mark character
\\ backslash character

o Example:
System.out.println("\\hello\nhow\tare \"you\"?\\\\");

o Output:
\hello
how are "you"?\\

63

Comment on syntax errors

q A syntax/compile error: A problem in the
structure of a program that causes the compiler
to fail, e.g.,
o Missing semicolon
o Too many or too few { } braces
o Class and file names do not match
o …

q Compilers can’t (DO not) read minds.
q Compilers don’t make mistakes.
q If the program is not doing what you want, do

NOT blame the computer---it’s YOU who made a
mistake.

64

65

Outline

q Admin.
q von Neumann Model: a Symbol Manipulation

Platform
q Java methods

Recap: Java Programming Steps

66

q Programming in Java consists of three tasks
m edit java source code (.java files)
m compile java source code to generate bytecode

(.class files)
m execute/run/test bytecode using an interpreter

run
output

source code
compile

byte code

Recap: Top-Down Java Syntax Structure

public class <class name> {
public static void main(String[] args) {

<statement>;
<statement>;
...
<statement>;

}
}

A class:
- has a name, defined in a file with same name

Convention we follow: capitalize each English word
- starts with {, and ends with }
- includes a group of methods

statement:
- a command to be executed
- end with ;

A method:
- has a name

Convention we follow: lowercase first
word, capital following

- starts with {, and ends with }
- includes a group of statements

Recap: The System.out.println
Statement

q Two ways to use the statement:
• System.out.println(“string”);

• You may need to use escape sequences in strings

• System.out.println();

qA related statement is
System.out.print(“string”);
It does not print a newline

68

69

Java Syntax: A Bottom-Up Look
q Basic Java syntax units

o white space and comments
o identifiers (words)
o symbols: { } “ () < > [] ; = …
o strings
o numbers
// This is a one-line comment
public class Hello {

public static void main(String[] args) {
System.out.println("Hello, world!");
System.out.println();
System.out.println("This program produces");
System.out.println("four lines of output");

}
}

70

Java Syntax: A Bottom-Up Look
q Basic Java syntax units

o white space and comments
o identifiers (words)
o symbols: { } “ () < > [] ; = …
o strings
o numbers

public class Hello {
public static void main(String[] args) {

System.out.println("Hello, world!");
System.out.println();
System.out.println("This program produces");
System.out.println("four lines of output");

}
}

Java depends on the
identifiers and

symbols to understand
your program

Syntax Error: Example
1 public class Hello {
2 pooblic static void main(String[] args) {
3 System.owt.println("Hello, world!")_
4 }
5 }

q Compiler output:
Hello.java:2: <identifier> expected

pooblic static void main(String[] args) {
^

Hello.java:3: ';' expected
}
^
2 errors

o The compiler shows the line number where it found the error.
o The error messages sometimes can be tough to understand:

• Why can’t the computer just say “You misspelled ‘public’”?
• Since the computer knows that a “;” is missing, can’t it just fix it??

72

Java Programming Steps and Errors

q Compile-time errors
o the compiler may find problems with

syntax and other basic issues
o if compile-time errors exist, an

executable version of the program is
not created

q Run-time errors
o a problem can occur during program

execution, such as trying to divide by
zero, which causes a program to
terminate abnormally (crash)

q Logical errors
o a program may run, but produce

incorrect results

73

Programming in Java: IDE
q Professional programmers typically use an Integrated

Development Environment (IDE)
• Example IDEs: Eclipse, IntelliJ, DrJava, etc.
• An IDE usually presents the user with a space for text (like an

editor) but layers additional features on top of the text for
the user's benefit.

• Note: The underlying file contains pure text, just like a text editor.
• These features can be very useful and save time.

• Example features are GUI compile, GUI execution, code completion,
and syntax highlighting.

• IDEs take more time to get started than a simple text editor,
and we will arrange sessions to review how to use the Eclipse
IDE

Roadmap

74

objects

methods and classes

graphics, sound, and image I/O

arrays

conditionals and loops

math text I/O

assignment statementsprimitive data types

any program you might want to write

Reading and Practice Slides
(Out of Class)

Questions

q What is the output of the following println
statements?

System.out.println("\ta\tb\tc");
System.out.println("\\\\");
System.out.println("'");
System.out.println("\"\"\"");
System.out.println("C:\nin\the downward
spiral");

q Write a println statement to produce this
output:
/ \ // \\ /// \\\

Answers

q Output of each println statement:
a b c

\\
'
"""
C:
in he downward spiral

q println statement to produce the line of output:
System.out.println("/ \\ // \\\\ /// \\\\\\");

Questions

q What println statements will generate this output?
This program prints a
quote from the Gettysburg Address.

"Four score and seven years ago,
our 'fore fathers' brought forth on
this continent a new nation."

q What println statements will generate this output?
A "quoted" String is
'much' better if you learn
the rules of "escape sequences."

Also, "" represents an empty String.
Don't forget: use \" instead of " !
'' is not the same as "

Answers

q println statements to generate the output:
System.out.println("This program prints a");
System.out.println("quote from the Gettysburg Address.");
System.out.println();
System.out.println("\"Four score and seven years ago,");
System.out.println("our 'fore fathers' brought forth on");
System.out.println("this continent a new nation.\"");

q println statements to generate the output:
System.out.println("A \"quoted\" String is");
System.out.println("'much' better if you learn");
System.out.println("the rules of \"escape sequences.\"");
System.out.println();
System.out.println("Also, \"\" represents an empty

String.");
System.out.println("Don't forget: use \\\" instead of \"

!");
System.out.println("'' is not the same as \"");

Questions
q What println statements will generate this

output?
This quote is from
Irish poet Oscar Wilde:

"Music makes one feel so romantic
- at least it always gets on one's nerves –
which is the same thing nowadays."

q What println statements will generate this
output?
A "quoted" String is
'much' better if you learn
the rules of "escape sequences."

Also, "" represents an empty String.
Don't forget: use \" instead of " !
'' is not the same as "

Answers
q println statements to generate the output:

System.out.println("This quote is from");
System.out.println("Irish poet Oscar Wilde:”);
System.out.println();
System.out.println("\"Music makes one feel so romantic");
System.out.println("- at least it always gets on one's nerves -");
System.out.println("which is the same thing nowadays.\"");

q println statements to generate the output:
System.out.println("A \"quoted\" String is");
System.out.println("'much' better if you learn");
System.out.println("the rules of \"escape sequences.\"");
System.out.println();
System.out.println("Also, \"\" represents an empty

String.");
System.out.println("Don't forget: use \\\" instead of \"

!");
System.out.println("'' is not the same as \"");

82

Syntax and Semantics

q The syntax rules of a language define how we can put
characters together to make a valid program

q The semantics of a program define what a program
does
o a program that is syntactically correct is not

necessarily logically (semantically) correct
o This is similar in natural language, e.g.,

o “Yale University has no dining halls.”
o “Harvard can beat Yale.”

q At the very beginning, the challenge is to resolve
syntax issues; but quickly, we will focus on the
semantics—let a program do what we want

Some Common Compile/Syntax Errors

q A syntax/compile error: A problem in the
structure of a program that causes the compiler
to fail, e.g.,
o Missing semicolon
o Too many or too few { } braces
o Class and file names do not match
o …

83

Syntax Error: Example
1 public class Hello {
2 pooblic static void main(String[] args) {
3 System.owt.println("Hello, world!")_
4 }
5 }

Syntax Error: Example
1 public class Hello {
2 pooblic static void main(String[] args) {
3 System.owt.println("Hello, world!")_
4 }
5 }

q Compiler output:
Hello.java:2: <identifier> expected

pooblic static void main(String[] args) {
^

Hello.java:3: ';' expected
}
^
2 errors

o The compiler shows the line number where it found the error.
o The error messages sometimes can be tough to understand:

• Why can’t the computer just say “You misspelled ‘public’”?
• Since the computer knows that a “;” is missing, can’t it just fix it??

End Outside Slides

Backup Slides

87

88

Assembly Languages

movl (%edx,%eax), %ecx
movl 12(%ebp), %eax
leal 0(,%eax,4), %edx
movl $nodes, %eax
movl (%edx,%eax), %eax
fldl (%ecx)
fsubl (%eax)
movl 8(%ebp), %eax
leal 0(,%eax,4), %edx
movl $nodes, %eax
movl (%edx,%eax), %ecx
movl 12(%ebp), %eax
leal 0(,%eax,4), %edx
movl $nodes, %eax

q Assembly language or
simply assembly is a
human-readable
notation for the
machine language

it’s much easier to
remember:

movl %al, 97

than

10110000 01100001
Example assembly code fragment

Some Major Types of High-
Level Languages

89

q Procedural languages: programs are a series of commands
o Pascal (1970): designed for education
o C (1972): low-level operating systems and device drivers

qFunctional programming: functions map inputs to outputs
o Lisp (1958) / Scheme (1975), ML (1973), Haskell (1990)

qObject-oriented languages: programs use interacting "objects"
o Smalltalk (1980): first major object-oriented language
o C++ (1985): "object-oriented" improvements to C

o successful in industry; used to build major OSes such as Windows
o Java (1995): designed for embedded systems, web apps/servers

• Runs on many platforms (Windows, Mac, Linux, cell phones...)

