
Introduction to
Computational Thinking

Lecture #3:
Java Methods &

Primitive Data Types

Qiao Xiang, Qingyu Song
https://sngroup.org.cn/courses/ct-

xmuf25/index.shtml
10/15/2025

This deck of slides are heavily based on cs112 at Yale University and cs101 at UCAS, respectively,
by courtesy of Dr. Y. Richard Yang and Dr. Zhiwei Xu.

2

3

Outline

q Admin.
q Java methods

Admin

q Practice Slides at the end of slides for
Lecture 2

q Office hours have been posted
q PS1

o You have 9 discretionary late days across the
semester, but can use at most 3 days per PSET

4

Recap

q What are digital symbol manipulations?
q Data are digital symbols
q Programs are digital symbols manipulation

5

Recap: Java Programming Steps

6

q Programming in Java consists of three tasks
m edit java source code (.java files)
m compile java source code to generate bytecode

(.class files)
m execute/run/test bytecode using an interpreter

run
output

source code
compile

byte code

Recap: Top-Down Java Syntax Structure

public class <class name> {
public static void main(String[] args) {

<statement>;
<statement>;
...
<statement>;

}
}

A class:
- has a name, defined in a file with same name

Convention we follow: capitalize each English word
- starts with {, and ends with }
- includes a group of methods

statement:
- a command to be executed
- end with ;

A method:
- has a name

Convention we follow: lowercase first
word, capital following

- starts with {, and ends with }
- includes a group of statements

Recap: The System.out.println
Statement

q Two ways to use the statement:
• System.out.println(“string”);

• You may need to use escape sequences in strings

• System.out.println();

qA related statement is
System.out.print(“string”);
It does not print a newline

8

9

Java Syntax: A Bottom-Up Look
q Basic Java syntax units

o white space and comments
o identifiers (words)
o symbols: { } “ () < > [] ; = …
o strings
o numbers
// This is a one-line comment
public class Hello {

public static void main(String[] args) {
System.out.println("Hello, world!");
System.out.println();
System.out.println("This program produces");
System.out.println("four lines of output");

}
}

10

Java Syntax: A Bottom-Up Look
q Basic Java syntax units

o white space and comments
o identifiers (words)
o symbols: { } “ () < > [] ; = …
o strings
o numbers

public class Hello {
public static void main(String[] args) {

System.out.println("Hello, world!");
System.out.println();
System.out.println("This program produces");
System.out.println("four lines of output");

}
}

Java depends on the
identifiers and

symbols to understand
your program

Syntax Error: Example
1 public class Hello {
2 pooblic static void main(String[] args) {
3 System.owt.println("Hello, world!")_
4 }
5 }

q Compiler output:
Hello.java:2: <identifier> expected

pooblic static void main(String[] args) {
^

Hello.java:3: ';' expected
}
^
2 errors

m The compiler shows the line number where it found the error.
m The error messages sometimes can be tough to understand:

• Why can’t the computer just say “You misspelled ‘public’”?
• Since the computer knows that a “;” is missing, can’t it just fix it??

12

Java Programming Steps and Errors

q Compile-time errors
m the compiler may find problems with

syntax and other basic issues
m if compile-time errors exist, an

executable version of the program is
not created

q Run-time errors
m a problem can occur during program

execution, such as trying to divide by
zero, which causes a program to
terminate abnormally (crash)

q Logical errors
m a program may run, but produce

incorrect results

Roadmap

13

objects

methods and classes

graphics, sound, and image I/O

arrays

conditionals and loops

math text I/O

assignment statementsprimitive data types

any program you might want to write

14

Outline

q Admin.
q von Neumann Model: a Symbol Manipulation

Platform
q Java methods

o Motivation: why methods?

Algorithms
q Algorithm: A list of steps for solving a problem.

q An example algorithm (recipe): "Bake sugar cookies”

An Example Algorithm Spec: "Bake
two batches of sugar cookies"

1. Preheat oven temperature to 375F.
2. Mix the dry ingredients.
3. Cream the butter and sugar.
4. Beat in the eggs.
5. Stir in the dry ingredients.
6. Set the timer for 8 min.
7. Place 1st batch of cookies to oven.
8. Allow the cookies to bake.
9. Set the timer for 8 min.
10. Place 2nd batch of cookies to oven.
11. Allow the cookies to bake.
12. Mix ingredients for frosting.
13. Spread frosting and sprinkles.

Readability of the
specification?

Problem 1: Lack of Structure

q Lack of structure: Many tiny steps; tough to
remember.
o A human being typically can only manage seven (plus or

minus 2) pieces of information at one time

http://www.michaeljemery.com/nlp/your-conscious-minds-capacity-seven-plus-or-minus-two-chunks-of-information/

Problem 2: Redundancy

q Redundancy: unnecessary repeat

1. Preheat oven temperature to 375F.
2. Mix the dry ingredients.
3. Cream the butter and sugar.
4. Beat in the eggs.
5. Stir in the dry ingredients.
6. Set the timer for 8 min.
7. Place the first batch of cookies into the oven.
8. Allow the cookies to bake.
9. Set the timer for 8 min.
10. Place the second batch of cookies into the oven.
11. Allow the cookies to bake.
12. Mix ingredients for frosting.
13. Spread frosting and sprinkles.

Fix: Structured Algorithms

q Structured algorithm: Split into coherent tasks.
1 Preheat oven.
o Set oven to 375 degrees

2 Make the cookie batter.
o Mix the dry ingredients.
o Cream the butter and sugar.
o Beat in the eggs.
o Stir in the dry ingredients.

3 Bake the cookies.
o Set the timer for 8 min.
o Place the cookies into the oven.
o Allow the cookies to bake.

4 Decorate the cookies.
o Mix the ingredients for the frosting.
o Spread frosting and sprinkles onto the cookies.

Structured Algorithm?
// This program displays a delicious recipe for baking cookies.
public class BakeCookies2 {

public static void main(String[] args) {
// Step 1: preheat oven
System.out.println(“Preheat oven to 375F.");

// Step 2: Make the cookie batter.
System.out.println("Mix the dry ingredients.");
System.out.println("Cream the butter and sugar.");
System.out.println("Beat in the eggs.");
System.out.println("Stir in the dry ingredients.");

// Step 3a: Bake cookies (first batch).
System.out.println("Set the timer for 8 min.");
System.out.println("Place a batch of cookies into the oven.");
System.out.println("Allow the cookies to bake.");

// Step 3b: Bake cookies (second batch).
System.out.println("Set the timer for 8 min.");
System.out.println("Place a batch of cookies into the oven.");
System.out.println("Allow the cookies to bake.");

// Step 4: Decorate the cookies.
System.out.println("Mix ingredients for frosting.");
System.out.println("Spread frosting and sprinkles.");

}
}

Structured Algorithms
q Structured algorithm provides abstraction

(hide/ignore the right details at the right time)
1 Preheat oven.
o Set oven to 375 degrees

2 Make the cookie batter.
o Mix the dry ingredients.
o Cream the butter and sugar.
o Beat in the eggs.
o Stir in the dry ingredients.

3 Bake the cookies.
o Set the timer.
o Place the cookies into the oven.
o Allow the cookies to bake.

4 Decorate the cookies.
o Mix the ingredients for the frosting.
o Spread frosting and sprinkles onto the cookies.

Structured Algorithms
q Structured algorithm provides abstraction

(hide/ignore the right details at the right time)
1 Preheat oven.
m Set oven to 375 degrees

2 Make the cookie batter.
m Mix the dry ingredients.
m Cream the butter and sugar.
m Beat in the eggs.
m Stir in the dry ingredients.

3 Bake the cookies.
m Set the timer.
m Place the cookies into the oven.
m Allow the cookies to bake.

4 Decorate the cookies.
m Mix the ingredients for the frosting.
m Spread frosting and sprinkles onto the cookies.

Removing Redundancy
q A well-structured algorithm can describe repeated

tasks with less redundancy.
1 Preheat oven.

2 Make the cookie batter.

3a Bake the cookies (first batch).
•

3b Bake the cookies (second batch).

4 Decorate the cookies.

24

Outline

q Admin.
q Java methods

o Motivation
o Syntax: declaring method

Static Methods

q Arrange statements into groups
and give each group a name.

q Each such named group of
statements is a static method

q Writing a static method is like
adding a new command to Java.

class
method A
statement
statement
statement

method B
statement
statement

method C
statement
statement
statement

Gives your method a name so it can be referred to.
q Syntax:

public static void <name>() {
<statement>;
<statement>;
...
<statement>;

}

q Example:
public static void printWarning() {

System.out.println("This product causes cancer");
System.out.println("in lab rats and humans.");

}

Declaring a Method

Calling a Method

Executes the method's code

q Syntax:
<name>();

o You can call the same method many times if you like.

q Example:
printWarning();

o Output:

This product causes cancer
in lab rats and humans.

Example
public class FreshPrince {

public static void main(String[] args) {
rap(); // Calling (running) the rap method
System.out.println();
rap(); // Calling the rap method again

}

// This method prints the lyrics to my favorite song.
public static void rap() {

System.out.println("Now this is the story all about how");
System.out.println("My life got flipped turned upside-down");

}
}

Example
public class FreshPrince {

public static void main(String[] args) {
rap(); // Calling (running) the rap method
System.out.println();
rap(); // Calling the rap method again

}

// This method prints the lyrics to my favorite song.
public static void rap() {

System.out.println("Now this is the story all about how");
System.out.println("My life got flipped turned upside-down");

}
}

Output:
Now this is the story all about how
My life got flipped turned upside-down

Now this is the story all about how
My life got flipped turned upside-down

Final Cookie Program
// This program displays a delicious recipe for baking cookies.
public class BakeCookies3 {

public static void main(String[] args) {
preheatOven();
makeBatter();
bake(); // 1st batch
bake(); // 2nd batch
decorate();

}

// Step 1: Preheat oven
public static void preheatOven() {

System.out.println(“Preheat Oven to 375F.");
}
// Step 2: Make the cake batter.
public static void makeBatter() {

System.out.println("Mix the dry ingredients.");
System.out.println("Cream the butter and sugar.");
System.out.println("Beat in the eggs.");
System.out.println("Stir in the dry ingredients.");

}

// Step 3: Bake a batch of cookies.
public static void bake() {

System.out.println("Set the timer for 8 min.");
System.out.println("Place a batch of cookies into the oven.");
System.out.println("Allow the cookies to bake.");

}
// Step 4: Decorate the cookies.
public static void decorate() {

System.out.println("Mix ingredients for frosting.");
System.out.println("Spread frosting and sprinkles.");

}
}

Examples: Modifying
BakeCookies
q Bake three batches

q Change timer from 8 to 10 min

31

q Capture structure of the program
m main should be a good summary of the program

public static void main(String[] args) {

}

Summary: Why Methods?

public static void main(String[] args) {

}

public static ... (...) {

}

public static ... (...) {

}

q Eliminate redundancy
public static void main(String[] args) {

}

Summary: Why Methods?

public static void main(String[] args) {

}

public static ... (...) {

}

34

Outline

q Admin.
q Java methods

o Motivations
o Syntax: declaring method
o Method control flow

q When a method A calls another method B,
the program's execution...
o "jumps" into method B, executing its

statements, then
o "jumps" back to method A at the point where

the method was called.

Method Calling Flow

Methods Calling Methods
public class MethodsExample {

public static void main(String[] args) {
message1();
message2();
System.out.println("Done with main.");

}
public static void message1() {

System.out.println("This is message1.");
}
public static void message2() {

System.out.println("This is message2.");
message1();
System.out.println("Done with message2.");

}
}

Methods Calling Methods
public class MethodsExample {

public static void main(String[] args) {
message1();
message2();
System.out.println("Done with main.");

}
public static void message1() {

System.out.println("This is message1.");
}
public static void message2() {

System.out.println("This is message2.");
message1();
System.out.println("Done with message2.");

}
}

q Output:
This is message1.
This is message2.
This is message1.
Done with message2.
Done with main.

public class MethodsExample {
public static void main(String[] args) {

message1();

message2();

System.out.println("Done with main.");
}

...
}

public static void message1() {
System.out.println("This is message1.");

}

public static void message2() {
System.out.println("This is message2.");
message1();

System.out.println("Done with message2.");
}

public static void message1() {
System.out.println("This is message1.");

}

Methods Calling Methods

Methods Calling Methods

q Example: What is the output of Lullaby?

40

Outline

q Admin. and recap
q Java methods

o Why methods?
o Syntax: declaring method
o Method control flow
o Designing methods

Example

q Write a program to print these figures
using methods.

/ \
/ \
\ /
______/

\ /
______/
+--------+

/ \
/ \
| STOP |
\ /
______/

/ \
/ \
+--------+

Program version 1
public class Figures1 {

public static void main(String[] args) {
System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");
System.out.println("\\ /");
System.out.println(" ______/");
System.out.println();
System.out.println("\\ /");
System.out.println(" ______/");
System.out.println("+--------+");
System.out.println();
System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");
System.out.println("| STOP |");
System.out.println("\\ /");
System.out.println(" ______/");
System.out.println();
System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");
System.out.println("+--------+");

}
}

The code does not reflect
structure.

It has redundancy.

43

Method Design Techniques

q A basic approach of designing methods,
with consideration of structure and
removing redundancy, is called top-down
decomposition
o dividing a problem into sub problems to be

solved using methods

Top-Down Decomposition

/ \
/ \
\ /
______/

\ /
______/
+--------+

/ \
/ \
| STOP |
\ /
______/

/ \
/ \
+--------+

egg teaCup stopSign hat

main

Top-Down Decomposition (egg)

/ \
/ \
\ /
______/

\ /
______/
+--------+

/ \
/ \
| STOP |
\ /
______/

/ \
/ \
+--------+

egg teaCup stopSign hat

main

eggTop eggBottom

Top-Down Decomposition
(teaCup)

/ \
/ \
\ /
______/

\ /
______/
+--------+

/ \
/ \
| STOP |
\ /
______/

/ \
/ \
+--------+

egg teaCup stopSign hat

main

eggTop eggBottom line

Top-Down Decomposition
(stopSign)

/ \
/ \
\ /
______/

\ /
______/
+--------+

/ \
/ \
| STOP |
\ /
______/

/ \
/ \
+--------+

egg teaCup stopSign hat

main

eggTop eggBottom line stopLine

Top-Down Decomposition (hat)

/ \
/ \
\ /
______/

\ /
______/
+--------+

/ \
/ \
| STOP |
\ /
______/

/ \
/ \
+--------+

egg teaCup stopSign hat

main

eggTop eggBottom line stopLine

Q: What is a good order to
implement/test the methods?

Structured Program version
// Prints several figures, with methods
// for structure and redundancy.
public class Figures3 {

public static void main(String[] args) {
egg();
teaCup();
stopSign();
hat();

}
// Draws the top half of an an egg figure.
public static void eggTop() {

System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");

}
// Draws the bottom half of an egg figure.
public static void eggBottom() {

System.out.println("\\ /");
System.out.println(" ______/");

}
// Draws a complete egg figure.
public static void egg() {

eggTop();
eggBottom();
System.out.println();

}
...

Program version 3, cont'd.
...
// Draws a line of dashes.
public static void line() {

System.out.println("+--------+");
}

// Draws a teacup figure.
public static void teaCup() {

eggBottom();
line();
System.out.println();

}
// Draws a stop sign figure.
public static void stopSign() {

eggTop();
System.out.println("| STOP |");
eggBottom();
System.out.println();

}
// Draws a figure that looks sort of like a hat.
public static void hat() {

eggTop();
line();

}
}

A Word about Style

q Structure your code properly
q Eliminate redundant code

q Use comments to describe code behavior

q Use spaces judiciously and consistently
q Indent properly

q Follow the naming conventions

Why Style?

q Programmers build on top of other’s code all the
time.
o You shouldn’t waste time deciphering what a method

does.

q You should spend time on thinking or coding. You
should NOT be wasting time looking for that
missing closing brace.

q So code with style!

Foundational Programming
Concepts

53

objects

methods and classes

graphics, sound, and image I/O

arrays

conditionals and loops

Math text I/O

assignment statementsprimitive data types

any program you might want to write

Outline

q Admin and recap
q Java methods
q Primitive data types

o why data types

54

55

Memory

9278
9279
9280
9281
9282
9283
9284
9285
9286

A computer can use multiple cells
(e.g., 2 bytes) to store a value

00110000
Each memory cell has a set
number of bits (usually 8
bits, or one byte); a bit can
represent 2 values of 0 or 1)

RAM is divided into
many cells; each cell can
be identified by a numeric
address

Primary storage area
for programs and data

Also called RAM Main
Memory

- how many possible values can a byte represent?

- how many possible values can 2 bytes represent?

56

Variable

9278
9279
9280
9281
9282
9283
9284
9285
9286

00110000

RAM is divided into
many cells; each cell can
be identified by a numeric
address

In high-level programming, instead
of a numerical address, you can refer
to a memory location by a name,
say x. This is called a variable.

Problem

q What does the number
(combination) stored at
a given memory location
represent?

00110000

Main
Memory

Two Example Possibilities

q 00110000 à number 48
q 00110000 à character ‘0‘

q Problem: How can the computer tell what
00110000 stands for: a character 0 or num 48?

00110000

Main
Memory

http://www.wikipaintings.org/en/salvador-dali/invisible-sleeping-woman-horse-lion-1930

Type System

q type: A category or set of values
and operations defined on those
values.
o By specifying the type of a memory

location, we know what the values
represent

q Many languages ask the programmer
to specify types
o Examples: integer, real number,

character

0110100

Main
Memory

Variable and Type

q Variable: A piece of the computer's memory that is
given a name and a type to store value of the type.

q Steps for using a variable:
o Declare it - state its name and type
o Assign value - initialize or update its value
o Use it - print it or use it as part of an expression

62

Primitive Data Types

qThere are eight (simple) primitive data
types in Java

o six numerical types (e.g., int, double)
• for mathematical calculation

o characters
• for text processing

o Boolean (logical) values
• for decision making

Declaration

q Variable declaration: Sets aside memory for storing a value.
o Variables must be declared before they can be used.

q Syntax:
<type> <name>;

o int x;

o double myGPA;

x

myGPA

Assignment

q Assignment: Stores a value into a variable.
o The value can be an expression; the variable stores its result.

q Syntax:
<name> = <expression>;

o int x;
x = 3;

o double myGPA;
myGPA = 1.0 + 2.25;

x 3

myGPA 3.25

q A variable can only store a value of its own type.

Outline

q Admin and recap
q Java methods
q Primitive data types

o why data types?
o storage and representation

65

66

Numeric Primitive Data Types
numbers

integer numbers real (floating) numbers

byte short int long float double

q The differences among the various numeric
primitive types are their storage sizes and
representation format, and hence the ranges
& precision of the values they can store

67

Integer Numeric Data Types

q Different integer numeric data types have
different ranges and precision

Type

byte
short
int
long

Storage

1 byte
2 bytes
4 bytes
8 bytes

Min Value

-128
-32,768
-2,147,483,648
< -9 x 1018

Max Value

127
32,767
2,147,483,647
> 9 x 1018

numbers
with no

fractional
part

68

Real Numeric Data Types

q Represented using the IEEE 754 format
o with limited # of precision bits
o See Precision.java

Question: can computer store all real numbers in a range?

69

All Numeric Data Types

q Different integer numeric data types have
different ranges and precision

Type

byte
short
int
long

float
double

Storage

1 byte
2 bytes
4 bytes
8 bytes

4 bytes
8 bytes

Min Value

-128
-32,768
-2,147,483,648
< -9 x 1018

+/- 3.4 x 1038 with 7 significant digits
+/- 1.7 x 10308 with 15 significant digits

Max Value

127
32,767
2,147,483,647
> 9 x 1018

IEEE 754
format

numbers
with no

fractional
part

70

Java Numerical Value and Type
qJava is a strongly typed language, i.e.,

every data item has a type
q An integer literal is by default of type int

o that is, a literal number 4 in Java is of type int
o to say that the number 4 is of type long, write 4l

or 4L (4L is preferred over 4l since lower case “l”
is hard to distinguish from 1)

q A real (floating point) literal (e.g., -1.23
6.12e23) is by default of type double
o to say that the number 0.1 is of type float, write

0.1f or 0.1F

Questions

71

Question: to represent the world population, which numeric
data type variable do you use?

Question: to represent pi as 3.14159265359, which numeric
data type variable do you use?

Question: to represent the number of students at Xiamen
University, which numeric data type variable do you use?

byte; short; int; long; float; double

Question: to represent your GPA, which numeric data type
variable do you use?

Question: to represent a person’s height in meters, which
numeric data type variable do you use?

72

Real Life Example: Ariane 5
q Historical example: Ariane 5 explosion in 1996

(http://www.youtube.com/watch?v=kYUrqdUyEpI;
http://www.ima.umn.edu/~arnold/disasters/ariane.html)

http://www.ima.umn.edu/~arnold/disasters/ariane.html

73

Real Life Example: Ariane 5
q Historical example: Ariane 5 explosion in 1996

(http://www.youtube.com/watch?v=kYUrqdUyEpI;
http://www.ima.umn.edu/~arnold/disasters/ariane.html)

http://www.ima.umn.edu/~arnold/disasters/ariane.html

74

Real Life Example: Ariane 5
q Historical example: Ariane 5 explosion in 1996

(http://www.youtube.com/watch?v=kYUrqdUyEpI;
http://www.ima.umn.edu/~arnold/disasters/ariane.html)

q Reason: range error
q trying to store a 64-bit real number (a double)

to a 16-bit integer led to the crash

http://www.ima.umn.edu/~arnold/disasters/ariane.html

75

Real Life Example: Patriot Failure

q The Patriot Missile Failure in 1991
o Perfect detection of a Scud missile,

but the intercepting Patriot missed
the target

q Reason: precision error
o a computer cannot represent 0.1

precisely; for a 24-bit floating point
number they used, it is off by
0.000000095.

o After 100 hours in operation, it is off
by 0.34 seconds (=0.000000095*100
hours * 60 min/hour * 60 sec/min *
10), leading to an error of about 600
meters
(http://www.ima.umn.edu/~arnold/disasters/patriot.html
)

http://www.ima.umn.edu/~arnold/disasters/patriot.html

76

In the Movie

http://www.youtube.com/watch?v=G_wiXgRWrIU

77

Characters

q A char is a single character from a
character set

q A character set is an ordered list of
characters; each character is given a unique
number

q Character literals are represented in a
program by delimiting with single quotes:

’a’ ’X’ '7' ’$’ ',' '\n'

78

Java Character Set

qJava uses the Unicode character
set, a superset of ASCII
o uses sixteen bits (2 bytes) per

character, allowing for 65,536
unique characters

o it is an international character set,
containing symbols and characters
from many languages

o code chart can be found at:
http://www.unicode.org/charts/

http://www.unicode.org/charts/

79

Boolean

q A boolean value represents logical value:
true or false

q The keywords true and false are the
only valid values for a boolean type

q A boolean can also be used to represent
any two states, such as a light bulb being
on or off

Outline

q Admin and recap
q Java Methods
q Primitive data types

o why data types?
o storage and representation
o operations

80

81

Data Type and Operations
q A type defines not only the

storage/representation but also the allowed
and meaning (semantics) of operations
o Discussions: reasonable operations that can be

performed on two operands
• Integers: i1 ? i2
• Strings: s1 ? s2
• Characters: c1 ? c2

Data Type and Operations

82

compare
add +, sub -, multiply
*, divide /, modulus %

3.1415
6.022e23

floating-point
numbers

double

compare
add +, sub -, multiply
*, divide /, modulus %

17
12345integersint

==, !=,
and &&, or ||,

not !

true
falsetruth valuesboolean

sequences of
characters

characters

set of values operationsliteral valuestype

compare (more
details later on +-)

'A'
'@'

char

String concatenate +
"Hello"

”112 is fun"

83

Data Type and Operations

q Most operations (+, -, *, /) are intuitive
and similar to our daily-life use

q Perhaps a first major surprise in learning
programming is that the result of an
operation depends on the data type

3 + 5 v.s. “3” + “5”

3 / 5 v.s. 3.0 / 5.0

See TypeDep.java

84

Interpretation

You should think that there are
multiple versions of the same
operator, each for a type, e.g.,

• +int +string …
• /int /double …

Integer Division with /

q When we divide integers, the result is an integer
(the fractional part is discarded)
o 14 / 4 is 3, not 3.5

3 4
4) 14 10) 45

12 40
2 5

q More examples:
o 32 / 5 is
o 8 / 10 is
o 156 / 100 is

o Dividing by 0 causes an error when your program runs.

6
0
1

Integer Remainder with %

q The % operator computes the remainder from integer
division.
o 14 % 4 is 2
o 218 % 5 is 3

3 43
4) 14 5) 218

12 20
2 18

15
3

Practice (offline):
45 % 6
2 % 2
8 % 20
11 % 0

230857 % 10 is 7

7 % 2 is 1, 42 % 2 is 0

Obtain last digit of a number:

See whether a number is odd:
230857 % 10000 is 857Obtain last 4 digits:

Outline

q Admin and recap
q Primitive data types

o why data types?
o storage and representation
o operations
o expressions

87

88

Evaluating Arithmetic Expression

q Arithmetic operators can be combined into
complex arithmetic expressions
o (7 + 2) * 6 / 3

q The evaluation order of the operators in an
arithmetic expression is determined by a
well-defined precedence order
o Remember?

• Pretty Please My Dear Aunt Sally

Operator Precedence Rules

o Generally operators evaluate left-to-right.
1 - 2 - 3 is (1 - 2) - 3 which is -4

o But * / % have a higher level of precedence than + -
1 - 3 * 4 is -11

o Parentheses can force a certain order of evaluation:
(1 + 3) * 4 is 16

o Spacing does not affect order of evaluation
1+3 * 4-2 is 11

