Introduction to
Computational Thinking

Lecture #6 (Offline):

Text Input/Output (Scanner),
Object (briefly);

Boolean Expressions; Nested if/else;

Qiao Xiang, Qingyu Song
https://sngroup.org.cn/courses/ct-xmuf 25/index.shtml
11/7/2025

This deck of slides are heavily based on cs112 at Yale University and cs101 at UCAS, respectively,
by courtesy of Dr. Y. Richard Yang and Dr. Zhiwei Xu.

Qutline

d Admin and recap
a Method w/ return

d Summary of method definition and
invocation rules
m overloaded methods
m formal arguments are local variables
m primitive types use value semantics

dText I/0

m ILnput: basic Scanner input
m Output: basic printf and String.format

Foundational Programming Concepts

any program you might want to write

objects
methods and classes
graphics, sound, and image 1/0
arrays
conditionals and loops

math

primitive data types assignment statements

12

(Some Potentially Confusing)
Scanner Details

a The OS will not send input to Scanner constructed
using System.in until user hits enter (reason?)

d nextInt (), nextDouble (), next () are token

based scanning methods

m skip whitespace (spaces, tabs, new lines) until find first non-white
space, collect input into a tfoken until a whitespace, send token to
the method to interpret; the following white space remains

m How many tokens appear on the following line of input?
23 John Smith 42.0 "Hello world" $2.50 "™ 19”7

O nextLine () collects any input character into a string
until the first new line and discards the new line

13

Exercise: nextInt nextlLine

int i1 = console.nextint();
String s1 = console.nextLine();

\
z&@? 2018¢

result: il =2018 s1=""

\
z&@? 20180 (Jal

Lets have a try

result: il =2018 s1:="

a

n

First read ScannerTokenDiff.java to guess behaviors, then try.

Exercise: nextInt next

int i1 = console.nextInt();
String s1 = console.next();

\
z&@? 2018¢

result: il = 2018 program hangs, waiting for non-whitespace

\
@7 20180 Jal]«
2&@ Lets have a try

result: il = 2018 s1-="a"

First read ScannerTokenDiff.java to guess behaviors, then try.

15

Exercise: nextlLine or nhext?

System.out.print(“A number: “);
int il = console.nextint();
System.out.print(“File name: “);
String fileName = console. ();

Lets have a try

First read ScannerInputExample2.java to guess behaviors, then try. .

(Offline) Practice: Scanner Fun

Q Please try out ScannerFun.java

ScannerFun.java

17

Input from File

A There are two approaches
m Create a scanner with src as a file (more shortly)

m Redirect: a concept in computer science, which
allows the operating system to send a file's
content as if it is typed in by keyboard:

(Use command line: Terminal -> o working

directory)
$Jjava Plot < USA.txt

Plot.java USA.txt

18

Exercise: Plot a Geo Data File

d File format:
m Xmin ymin xmax ymax hpoints
m X, Y

m LN]

Plot.java USA.txt

19

Input from File

Standard Draw

File

PlotUSA.java USA.txt

20

Exercise

d What if you do not want to see the loading
process (e.g., see all display at once, not
one point at a time)?

Find solution from
StdDraw.java

Plot.java USA.txt

21

Design Issue

d What value to return when a token is not
the type the scanner expects

System.out.print ("Which year will you graduate? ");
Int year = console.nextInt();

Output: 5
Which year will you graduate? Timmy

22

Token and Exception

d When a token is not the type that the
scanner expects, since ho reasonable (non-
ambiguous) return value, Scanner throws an
exception (panic)

System.out.print ("Which year will you graduate° ")
int year = console.nextInt();

Output:

Which year will you graduate? Timmy
java.util.InputMismatchException

at java.util.Scanner.next (Unknown Source)
at java.util.Scanner.nextInt (Unknown Source)

23

Issue: How to avoid crash when
user may give wrong type of input?

System.out.print ("Which year will you graduate?
int year = console.nextInt();

Output:
Which year will you graduate? Timmy

")

24

Approach 1. Test before Proceed

System.out.print ("Which year will you graduate? ");

int year = console.nextInt();

Output:
Which year will you graduate? Timmy

0 Robust design

1. Add a test method to check whether the input
has the expected type

2. if the test failed, report error

25

The if statement

Executes a block of statements only if a test is

true I
if (fest) { o =
sfatemenf; trolled statement(s)
s*a*emenf ; after if statement il
}
a Example:
double gpa = console.nextDouble()

if (gpa >= 3.9)

System.out.println ("Welcome to XMU!"™); .

The if/else Statement

d An else clause can be added to an i f statement

to make it an i f-else statement:
if (test) {
statementl;

}

else {
statement?2;

}
Qd If the condition is true, statementl is

executed; if the condition is false,
statement? is executed

d One or the other will be executed, but not
both

27

The if/else Statement

Q Example:

if (gpa >=
System
} else {
System
}

no

Is the test true?

Y

yes

Y

execute the 'else’

execute the 'if!

controlled statement(s) controlled statement(s)

execUte statement

> after if/felse statement

3.8) {
.out.println("Welcome to XMU!");

.out.println(”"We recommend Harvard.

") ;

28

Qutline

d Admin and recap

dText I/0

m Input: basic Scanner input
m Output: basic printf and String.format

A Program flow of control
m Boolean expressions

29

Token and Exception

d When a token is not the type that the
scanner expects, since ho reasonable (non-
ambiguous) return value, Scanner throws an
exception (panic)

System.out.print ("Which year will you graduate° ")

int year = console.nextInt();

Output:

Which year will you graduate? Timmy
java.util<I§E§tM1smatchExceptlon

at Javarutrt—Sctarrner .next (Unknown Source)
at java.util.Scanner.nextInt (Unknown Source)

4

32

Exceptions

0O Exception: a programming language mechanism to
represent a runtime error, e.q.,
- dividing an integer by O
* trying to read the wrong type of value from a Scanner
* trying to read a file that does not exist

Q Java has defined a set of exceptions, each with a
name, e.g., ArithmeticException,
InputMisMatchException, FileNotFoundException

33

Why Not a "Smarter” nextInt()

ad For example, continue to scan the input to
find the integer?

A Design principle: design of basic methods
should KISS (Keep It Simple and Stupid)

ad Higher level programs handle the case in
their specific settings

34

Desigh Methodology: How to

Handle Potential Exceptions?

aTwo basic approaches
m Test before proceed
mProceed and clean up (try/catch)

35

Robust Tnput Approach 1: Test Before Proceed

J

Design pattern

1f (<ExceptionConditionFalse>) {
proceed;

}

else {
System.out.println(“Error message.”);

}

indicating a logical condition.

return type of hasNextInt() 1s boolean,

A

System.out.print ("Whic yeer will you graduate? ");

1f

}
el

}

(console.hasNextInt()) {
year = console.nextInt();
se {

System.out.println (“Wrong type; please give 1int.”);

36

Robust Tnput Approach 2: try and catch

O try/catch: if an exception happens, program execution
jumps to the catch statement, skipping the rest in the
try block.

try {
potentially dangerous statements

} catch (ExceptionName e) ({
handle exception, such as print an error message

} // end of catch

37

Robust Input Approach 2: Example

import Jjava.util.Scanner; // for Scanner

public class ScannerInputExampleTry {

public static void main(String[] args) {
Scanner console = new Scanner (System.in);
try {

System.out.print ("Which year will you graduate? ");
int year = console.nextInt();
System.out.println (“Your give “ + year);

} catch (InputMisMatchException e) {
// print an error message

System.out.println (“You give a wrong input type.’);

} // end of catch

} // end of main

38

File as Scanner Source

import java.io.File; // for File
import java.util.Scanner; // for Scanner

public class PlotFile {
public static void main (String[] args) {
File £ = new File (“USA.txt”);
Scanner input = new Scanner(f);

} // end of main

d Compilation fails with the following error:

PlotFile.java:9: unreported exception java.io.FileNotFoundException;

must be caught or declared to be thrown
Scanner input = new Scanner(f);

39

What Happened: the throws
Clause

O throws clause: Keyword on a method's header to state that
it may generate an exception (and will not handle it) and
those using it must handle it (called a checked exception;
hnextInt does not declare it).

Q Syntax:
public static <type> <name>(...) throws <type> {

m Example:

http://docs.oracle.com/javase/7/docs/api/ java/util/Scanner.ht
ml#Scanner(java.io.File)

40

Scanner File Tnput

import java.io.File; // for File
import java.util.Scanner; // for Scanner

public class PlotFile {
public static void main (String[] args)
try {
File £ = new File (VYUSA.txt"”);

{

Scanner input = new Scanner(f);

} catch (FileNotFoundException e) {
// print an error message

System.out.println(“File not found exception’);

} // end of catch

} // end of main

41

Qutline

d Admin and recap

dText I/0

m Input: Scanner input
- Scanner using object to remember state
* Scanner input with exceptions (run time errors)

m Output: basic printf and String.format

42

A Tiny Bit History of Java

Text Formatting

ad Before Java 1.5, Java provides formatting
classes such as NumberFormat and
DecimalFormat classes as part of the
java.text package

a But many programmers like the more flexible
method signature of printf () starting from

the C programming language

AdStarting from Java 1.5,
printf/formatr is added and typically

preferred by many programmers

43

Discussion

A Text output formatting as of now

m String concatenation without ability to specify
per variable format

44

Printf/Format Design

System.out.printf ("format string”, parameters) ;

QO Output with placeholders to insert parameters, e.qg.,

m

m

m

$d integer
$f real number
$S string

- these placeholders are used instead of + concatenation

m Example:

int x = 33
int vy = -17;

System.out.printf("x is %d and y is %d!\n", x, vy);

// x is 3 and y is -17!

« printf does not drop to the next line unless you write \n

https://docs.oracle.com/javase/8/docs/api/java/util/Formatter.html

45

Printf/Format Design
and Language Support

System.out.printf ("format string”, parameters) ;

aIn the most general case, Java allows

flexible (variable) method signature, e.g.,
public static type name(<typel> paraml,

<type2>... param2)

a Number and type of parameters
determined by the first parameter. We will

not learn how to define such methods, but
will use some: printf () and format ()

46

printf Width

m $Wd integer, W characters wide, right-aligned
m $-Wd integer, W characters wide, left-aligned
m $WTE real number, W characters wide, right-aligned

for (int 1 = 1; 1 <= 3; 1++) {
for (int 73 = 1; 7 <= 10; J++) {
System.out.printf ("%4d4d", (1 * 7J));
}
System.out.println() ; // to end the line
}

Output:
1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
36 9 12 15 18 21 24 27 30

47

printf Precision

.Df real number, rounded to D digits after decimal
W.Df real number, W chars wide, D digits after decimal
-W.Df real humber, W wide (left-align), D af ter decimal

o o©°

3
o\°

double gpa = 3.253764;
System.out.printf ("your GPA is %.1£\n", gpa);
System.out.printf ("more precisely: %8.3£f\n", gpa);

Output: 3

your GPA is 3.3 A

more precisely: 3.254
N J

¥
8

48

printf Formatting

a Many more formatting control options
supported by printf, e.qg., using the comma

(,) to display numbers with thousands

separator

System.out.printf ("%,d\n", 58625);
System.out.printf ("%, .2£\n", 12345678.9);

Output:

58,625
12,345,678.90

49

System.out.printf and
String.format

dsString.format has the same formatting
capability as printf, except that printf
outputs and String.format returns:

System.out.printf ("%, .2£\n", 12345678.9);

String s = String.format ("%, .2f\n", 12345678.9);
System.out.print(s);

Output:

12,345,678.90
12,345,678.90

Exercise: F2C

ARevise F2C to print 2 decimal digits.

51

Foundational Programming Concepts

any program you might want to write

methods and
graphics, sound, and image 1/0
arrays
nd loops
math text I/O

primitive data types assignment statements

52

Program Flow of Control

a Java has three types of program flow of
control:

m decision statements, or conditional statements:
decide whether or not to execute a particular
statement

m repetition statements, or loop statements:
perform a statement over and over repetitively

m exceptions: o handle run-time errors (atypical)

A The foundation of conditional/loop program
flow of control is the logical condition,
which should be a boolean expression

53

Basic Boolean Condition:
Relational Comparison

O A basic Boolean expression is to compare two
values using a relational operator :

Operator | Meaning Example Value
== equals 1 + == 2 true
I= does not equal 3.2 != 2.5 |true
< less than 10 < 5 false
> greater than 10 > 5 true
<= less than or equal to 126 <= 100 | false
>= greater than or equal to 5.0 >= 5.0 |true

0 Note the difference between the equality
operator (==) and the assignment operator (=)

54

Example: Basic Boolean Expression

public class Flip {
public static void main(String[] args) {
if (Math.random() < 0.5) System.out.println("Heads")
else System.out.println("Tails") ;

% java Flip
Heads

&P % java Flip
Heads

% java Flip
Tails

Flip.java ﬁ el

(Offline) Example: Chaos Game

a Play on equilateral triangle, with vertices R
(node 0), G (node 1), B (node 2) B

m Start at R
m RepeaT N times

- Pick a random vertex

* Move halfway between
current point and vertex

* Draw a point in color of
chosen vertex

.I
&
¢
£
ell
[
¢
[
[

(5

(Offline) Example: Chaos Game

% java Chaos

Sierpinski triangle

57

	Slide 1: Introduction to Computational Thinking
	Slide 2: Outline
	Slide 12: Foundational Programming Concepts
	Slide 13: (Some Potentially Confusing) Scanner Details
	Slide 14: Exercise: nextInt, nextLine
	Slide 15: Exercise: nextInt, next
	Slide 16: Exercise: nextLine or next?
	Slide 17: (Offline) Practice: Scanner Fun
	Slide 18: Input from File
	Slide 19: Exercise: Plot a Geo Data File
	Slide 20: Input from File
	Slide 21: Exercise
	Slide 22: Design Issue
	Slide 23: Token and Exception
	Slide 24: Issue: How to avoid crash when user may give wrong type of input?
	Slide 25: Approach 1: Test before Proceed
	Slide 26: The if statement
	Slide 27: The if/else Statement
	Slide 28: The if/else Statement
	Slide 29: Outline
	Slide 32: Token and Exception
	Slide 33: Exceptions
	Slide 34: Why Not a “Smarter” nextInt()
	Slide 35: Design Methodology: How to Handle Potential Exceptions?
	Slide 36: Robust Input Approach 1: Test Before Proceed
	Slide 37: Robust Input Approach 2: try and catch
	Slide 38: Robust Input Approach 2: Example
	Slide 39: File as Scanner Source
	Slide 40: What Happened: the throws Clause
	Slide 41: Scanner File Input
	Slide 42: Outline
	Slide 43: A Tiny Bit History of Java Text Formatting
	Slide 44: Discussion
	Slide 45: Printf/Format Design
	Slide 46: Printf/Format Design and Language Support
	Slide 47: printf Width
	Slide 48: printf Precision
	Slide 49: printf Formatting
	Slide 50: System.out.printf and String.format
	Slide 51: Exercise: F2C
	Slide 52: Foundational Programming Concepts
	Slide 53: Program Flow of Control
	Slide 54: Basic Boolean Condition: Relational Comparison
	Slide 55: Example: Basic Boolean Expression
	Slide 56: (Offline) Example: Chaos Game
	Slide 57: (Offline) Example: Chaos Game

