
Introduction to
Computational Thinking

Lecture #6 (Offline):
Text Input/Output (Scanner);

Object (briefly);

Boolean Expressions; Nested if/else;

Qiao Xiang, Qingyu Song

https://sngroup.org.cn/courses/ct-xmuf25/index.shtml

11/7/2025

This deck of slides are heavily based on cs112 at Yale University and cs101 at UCAS, respectively,

by courtesy of Dr. Y. Richard Yang and Dr. Zhiwei Xu.

Outline

❑Admin and recap

❑Method w/ return

❑Summary of method definition and
invocation rules

m overloaded methods

m formal arguments are local variables

m primitive types use value semantics

❑Text I/O
m Input: basic Scanner input

m Output: basic printf and String.format

2

Foundational Programming Concepts

12

objects

methods and classes

graphics, sound, and image I/O

arrays

conditionals and loops

math text I/O

assignment statementsprimitive data types

any program you might want to write

(Some Potentially Confusing)
Scanner Details

❑ The OS will not send input to Scanner constructed
using System.in until user hits enter (reason?)

❑ nextInt(), nextDouble(), next() are token
based scanning methods

m skip whitespace (spaces, tabs, new lines) until find first non-white
space, collect input into a token until a whitespace, send token to
the method to interpret; the following white space remains

m How many tokens appear on the following line of input?

 23 John Smith 42.0 "Hello world" $2.50 " 19”

❑ nextLine() collects any input character into a string
until the first new line and discards the new line

13

Exercise: nextInt, nextLine

result: i1 = 2018 s1 = “”

14

int i1 = console.nextInt();
String s1 = console.nextLine();

2018↵

result: i1 = 2018 s1 = “☐☐a☐”

☐2018☐☐a☐↵

Lets have a try

First read ScannerTokenDiff.java to guess behaviors, then try.

Exercise: nextInt, next

result: i1 = 2018 program hangs, waiting for non-whitespace

15
First read ScannerTokenDiff.java to guess behaviors, then try.

int i1 = console.nextInt();
String s1 = console.next();

2018↵

result: i1 = 2018 s1 = “a”

2018☐☐a☐↵
Lets have a try

Exercise: nextLine or next?

16

System.out.print(“A number: “);
int i1 = console.nextInt();
System.out.print(“File name: “);
String fileName = console._____();

Lets have a try

First read ScannerInputExample2.java to guess behaviors, then try.

(Offline) Practice: Scanner Fun

❑ Please try out ScannerFun.java

17
ScannerFun.java

Input from File

❑There are two approaches
m Create a scanner with src as a file (more shortly)

m Redirect: a concept in computer science, which
allows the operating system to send a file’s
content as if it is typed in by keyboard:
 (Use command line: Terminal -> to working
directory)
%java Plot < USA.txt

Plot.java USA.txt
18

Exercise: Plot a Geo Data File

❑ File format:
m xmin ymin xmax ymax npoints

m x, y

m …

Plot.java USA.txt
19

Input from File

PlotUSA.java USA.txt
20

Exercise

❑What if you do not want to see the loading
process (e.g., see all display at once, not
one point at a time)?

Plot.java USA.txt

Find solution from
StdDraw.java

21

Design Issue

❑What value to return when a token is not
the type the scanner expects

System.out.print("Which year will you graduate? ");

Int year = console.nextInt();

Output:

Which year will you graduate? Timmy

22

Token and Exception

❑When a token is not the type that the
scanner expects, since no reasonable (non-
ambiguous) return value, Scanner throws an
exception (panic)

java.util.InputMismatchException

 at java.util.Scanner.next(Unknown Source)

 at java.util.Scanner.nextInt(Unknown Source)

 ...

System.out.print("Which year will you graduate? ");

int year = console.nextInt();

Output:

Which year will you graduate? Timmy

23

Issue: How to avoid crash when
user may give wrong type of input?

24

System.out.print("Which year will you graduate? ");

int year = console.nextInt();

Output:

Which year will you graduate? Timmy

Approach 1: Test before Proceed

25

❑ Robust design
1. Add a test method to check whether the input

has the expected type

2. if the test failed, report error

System.out.print("Which year will you graduate? ");

int year = console.nextInt();

Output:

Which year will you graduate? Timmy

The if statement

Executes a block of statements only if a test is
true

 if (test) {
 statement;
 ...
 statement;
 }

❑ Example:
 double gpa = console.nextDouble();

 if (gpa >= 3.9)

 System.out.println("Welcome to XMU!");
26

27

The if/else Statement

❑ An else clause can be added to an if statement
to make it an if-else statement:

if (test) {

 statement1;

}

else {

 statement2;

}

❑ If the condition is true, statement1 is
executed; if the condition is false,
statement2 is executed

❑One or the other will be executed, but not
both

The if/else Statement

❑ Example:

 if (gpa >= 3.8) {

 System.out.println("Welcome to XMU!");

 } else {

 System.out.println(”We recommend Harvard.");

 }

28

Outline

❑Admin and recap

❑Text I/O
m Input: basic Scanner input

m Output: basic printf and String.format

❑ Program flow of control
m Boolean expressions

29

Token and Exception

❑When a token is not the type that the
scanner expects, since no reasonable (non-
ambiguous) return value, Scanner throws an
exception (panic)

java.util.InputMismatchException

 at java.util.Scanner.next(Unknown Source)

 at java.util.Scanner.nextInt(Unknown Source)

 ...

System.out.print("Which year will you graduate? ");

int year = console.nextInt();

Output:

Which year will you graduate? Timmy

32

Exceptions

❑ Exception: a programming language mechanism to
represent a runtime error, e.g.,

• dividing an integer by 0

• trying to read the wrong type of value from a Scanner

• trying to read a file that does not exist

❑ Java has defined a set of exceptions, each with a
name, e.g., ArithmeticException,
InputMisMatchException, FileNotFoundException

33

Why Not a “Smarter” nextInt()

❑ For example, continue to scan the input to
find the integer?

❑Design principle: design of basic methods
should KISS (Keep It Simple and Stupid)

❑Higher level programs handle the case in
their specific settings

34

Design Methodology: How to
Handle Potential Exceptions?

❑Two basic approaches
mTest before proceed
mProceed and clean up (try/catch)

35

Robust Input Approach 1: Test Before Proceed

❑Design pattern

36

return type of hasNextInt() is boolean,

indicating a logical condition.

if (<ExceptionConditionFalse>) {

 proceed;

}

else {

 System.out.println(“Error message.”);

}

System.out.print("Which year will you graduate? ");

if (console.hasNextInt()) {

 year = console.nextInt();

}

else {

 System.out.println(“Wrong type; please give int.”);

}

Robust Input Approach 2: try and catch

37

try {

 potentially dangerous statements

} catch (ExceptionName e) {

 handle exception, such as print an error message

} // end of catch

❑ try/catch: if an exception happens, program execution
jumps to the catch statement, skipping the rest in the
try block.

Robust Input Approach 2: Example

38

import java.util.Scanner; // for Scanner

public class ScannerInputExampleTry {

 public static void main(String[] args) {

 Scanner console = new Scanner(System.in);

 try {

 System.out.print("Which year will you graduate? ");

 int year = console.nextInt();

 System.out.println(“Your give “ + year);

 } catch (InputMisMatchException e) {

 // print an error message

 System.out.println(“You give a wrong input type.”);
 } // end of catch

 } // end of main

}

File as Scanner Source

39

import java.io.File; // for File

import java.util.Scanner; // for Scanner

public class PlotFile {

 public static void main(String[] args) {

 File f = new File(“USA.txt”);

 Scanner input = new Scanner(f);

…

 } // end of main

}

❑ Compilation fails with the following error:
PlotFile.java:9: unreported exception java.io.FileNotFoundException;

must be caught or declared to be thrown

 Scanner input = new Scanner(f);

What Happened: the throws
Clause

❑ throws clause: Keyword on a method's header to state that
it may generate an exception (and will not handle it) and
those using it must handle it (called a checked exception;
nextInt does not declare it).

❑ Syntax:
 public static <type> <name>(...) throws <type> {

m Example:

http://docs.oracle.com/javase/7/docs/api/java/util/Scanner.ht
ml#Scanner(java.io.File)

40

Scanner File Input

41

import java.io.File; // for File

import java.util.Scanner; // for Scanner

public class PlotFile {

 public static void main(String[] args) {

 try {

 File f = new File(“USA.txt”);

 Scanner input = new Scanner(f);

…
 } catch (FileNotFoundException e) {

 // print an error message

 System.out.println(“File not found exception”);
 } // end of catch

 } // end of main

}

Outline

❑Admin and recap

❑Text I/O
m Input: Scanner input

• Scanner using object to remember state

• Scanner input with exceptions (run time errors)

m Output: basic printf and String.format

42

A Tiny Bit History of Java
Text Formatting

❑ Before Java 1.5, Java provides formatting
classes such as NumberFormat and
DecimalFormat classes as part of the
java.text package

❑ But many programmers like the more flexible
method signature of printf() starting from
the C programming language

❑Starting from Java 1.5,
printf/formatr is added and typically
preferred by many programmers

43

Discussion

❑Text output formatting as of now
m String concatenation without ability to specify

per variable format ….

44

Printf/Format Design

System.out.printf("format string", parameters);

❑ Output with placeholders to insert parameters, e.g.,

m %d integer

m %f real number

m %s string

• these placeholders are used instead of + concatenation

m Example:

 int x = 3;

 int y = -17;

 System.out.printf("x is %d and y is %d!\n", x, y);

• printf does not drop to the next line unless you write \n

https://docs.oracle.com/javase/8/docs/api/java/util/Formatter.html

// x is 3 and y is -17!

45

Printf/Format Design
and Language Support

System.out.printf("format string", parameters);

❑ In the most general case, Java allows
flexible (variable) method signature, e.g.,

❑Number and type of parameters
determined by the first parameter. We will
not learn how to define such methods, but
will use some: printf() and format()

46

public static type name(<type1> param1,
 <type2>… param2)

printf Width

m %Wd integer, W characters wide, right-aligned

m %-Wd integer, W characters wide, left-aligned

m %Wf real number, W characters wide, right-aligned

m ...

for (int i = 1; i <= 3; i++) {

 for (int j = 1; j <= 10; j++) {

 System.out.printf("%4d", (i * j));

 }

 System.out.println(); // to end the line

}

Output:
 1 2 3 4 5 6 7 8 9 10

 2 4 6 8 10 12 14 16 18 20

 3 6 9 12 15 18 21 24 27 30

47

printf Precision

m %.Df real number, rounded to D digits after decimal

m %W.Df real number, W chars wide, D digits after decimal

m %-W.Df real number, W wide (left-align), D after decimal

 double gpa = 3.253764;

 System.out.printf("your GPA is %.1f\n", gpa);

 System.out.printf("more precisely: %8.3f\n", gpa);

 Output:

 your GPA is 3.3

 more precisely: 3.254

8

3

48

printf Formatting

❑Many more formatting control options
supported by printf, e.g., using the comma
(,) to display numbers with thousands
separator

49

System.out.printf("%,d\n", 58625);

System.out.printf("%,.2f\n", 12345678.9);

Output:

58,625

12,345,678.90

System.out.printf and
String.format

❑ String.format has the same formatting
capability as printf, except that printf
outputs and String.format returns:

50

System.out.printf("%,.2f\n", 12345678.9);

String s = String.format("%,.2f\n", 12345678.9);

System.out.print(s);

Output:

12,345,678.90

12,345,678.90

Exercise: F2C

❑Revise F2C to print 2 decimal digits.

51

Foundational Programming Concepts

52

objects

methods and classes

graphics, sound, and image I/O

arrays

conditionals and loops

math text I/O

assignment statementsprimitive data types

any program you might want to write

53

Program Flow of Control

❑ Java has three types of program flow of
control:

m decision statements, or conditional statements:
decide whether or not to execute a particular
statement

m repetition statements, or loop statements:
perform a statement over and over repetitively

m exceptions: to handle run-time errors (atypical)

❑The foundation of conditional/loop program
flow of control is the logical condition,
which should be a boolean expression

54

Basic Boolean Condition:
Relational Comparison

❑ A basic Boolean expression is to compare two
values using a relational operator :

❑ Note the difference between the equality
operator (==) and the assignment operator (=)

Operator Meaning Example Value

== equals 1 + 1 == 2 true

!= does not equal 3.2 != 2.5 true

< less than 10 < 5 false

> greater than 10 > 5 true

<= less than or equal to 126 <= 100 false

>= greater than or equal to 5.0 >= 5.0 true

55

Example: Basic Boolean Expression

Flip.java

(Offline) Example: Chaos Game

❑ Play on equilateral triangle, with vertices R
(node 0), G (node 1), B (node 2)

m Start at R

m Repeat N times
• Pick a random vertex

• Move halfway between
current point and vertex

• Draw a point in color of
chosen vertex

56

Chaos.java

B

(Offline) Example: Chaos Game

57

	Slide 1: Introduction to Computational Thinking
	Slide 2: Outline
	Slide 12: Foundational Programming Concepts
	Slide 13: (Some Potentially Confusing) Scanner Details
	Slide 14: Exercise: nextInt, nextLine
	Slide 15: Exercise: nextInt, next
	Slide 16: Exercise: nextLine or next?
	Slide 17: (Offline) Practice: Scanner Fun
	Slide 18: Input from File
	Slide 19: Exercise: Plot a Geo Data File
	Slide 20: Input from File
	Slide 21: Exercise
	Slide 22: Design Issue
	Slide 23: Token and Exception
	Slide 24: Issue: How to avoid crash when user may give wrong type of input?
	Slide 25: Approach 1: Test before Proceed
	Slide 26: The if statement
	Slide 27: The if/else Statement
	Slide 28: The if/else Statement
	Slide 29: Outline
	Slide 32: Token and Exception
	Slide 33: Exceptions
	Slide 34: Why Not a “Smarter” nextInt()
	Slide 35: Design Methodology: How to Handle Potential Exceptions?
	Slide 36: Robust Input Approach 1: Test Before Proceed
	Slide 37: Robust Input Approach 2: try and catch
	Slide 38: Robust Input Approach 2: Example
	Slide 39: File as Scanner Source
	Slide 40: What Happened: the throws Clause
	Slide 41: Scanner File Input
	Slide 42: Outline
	Slide 43: A Tiny Bit History of Java Text Formatting
	Slide 44: Discussion
	Slide 45: Printf/Format Design
	Slide 46: Printf/Format Design and Language Support
	Slide 47: printf Width
	Slide 48: printf Precision
	Slide 49: printf Formatting
	Slide 50: System.out.printf and String.format
	Slide 51: Exercise: F2C
	Slide 52: Foundational Programming Concepts
	Slide 53: Program Flow of Control
	Slide 54: Basic Boolean Condition: Relational Comparison
	Slide 55: Example: Basic Boolean Expression
	Slide 56: (Offline) Example: Chaos Game
	Slide 57: (Offline) Example: Chaos Game

