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Introduction to Trees

• Introduction to Trees

• Rooted Trees

• Trees as Models

• Properties of Trees
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A Motivated Example

• Type in “buy apple to eat” using the search engine
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Apples are so expensive, so why do so many people still buy them?

Apples are so expensive this year, they're even pricier than meat.

buy apple to eat
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phone
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Trees

Definition: A tree (树) is a connected undirected graph with no simple circuits.

Example: Which of these graphs are trees?

Solution: G1 and G2 are trees - both are connected and have no simple circuits. 
Because e, b, a, d, e is a simple circuit, G3 is not a tree. G4 is not a tree because it 
is not connected.

Definition: A forest (森林) is a graph that has                 
no simple circuit, but is not connected. Each of                                                     
the connected components in a forest is a tree.
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Trees (continued)

Theorem: An undirected graph is a tree if and only if there is a unique simple path between any 

two of its vertices. 

Proof: Assume that T is a tree. Then T is connected with no simple circuits. Hence, if x and y are 

distinct vertices of T, there is a simple path between them (by Theorem 1 of Section 10.4). This 

path must be unique - for if there were a second path, there would be a simple circuit in T. Hence, 

there is a unique simple path between any two vertices of a tree.

Now assume that there is a unique simple path between any two vertices of a graph T. Then T is 

connected because there is a path between any two of its vertices. Furthermore, T can have no 

simple circuits since if there were a simple circuit, there would be two paths between some two 

vertices. 

Hence, a graph with a unique simple path between any two vertices is a tree.
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Trees as Models
Arthur Cayley
(1821-1895)• Trees are used as models in computer science, chemistry, 

geology, botany,  psychology, and many other areas

• Trees were introduced by the mathematician Cayley in 
1857 in his work counting the number of isomers of 
saturated hydrocarbons. The two isomers of butane are 
shown at the right

• The organization of a computer file system into 
directories, subdirectories, and files is naturally 
represented as a tree

• Trees are used to represent the structure of organizations   
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Rooted Trees

Definition: A rooted tree (有根树) is a tree in which one vertex has 
been designated as the root and every edge is directed away from the 
root.

An unrooted tree is converted into different rooted trees when different 
vertices are chosen as the root.
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Rooted Tree Terminology

• Terminology for rooted trees is a                                                                                            
mix from botany and genealogy                                                               
(such as the Bernoulli family of mathematicians)

• If v is a vertex of a rooted tree other than the root, the parent of v is the unique vertex u such that 
there is a directed edge from u to v. When u is a parent of v, v is called a child of u. Vertices with 
the same parent are called siblings.

• The ancestors of a vertex are the vertices in the path from the root to this vertex, excluding the 
vertex itself and including the root. The descendants of a vertex v are those vertices that have v as 
an ancestor.

• A vertex of a rooted tree with no children is called a leaf. Vertices that have children are called 
internal vertices.

• If a is a vertex in a tree, the subtree with a as its root is the subgraph of the tree consisting of a and 
its descendants and all edges incident to these descendants.  
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Terminology for Rooted Trees

Example: In the rooted tree T (with root a): 
(i) Find the parent of c, the children of g, the siblings   

of h, the ancestors of e,  and the descendants of b. 
(ii) Find all internal vertices and all leaves.
(iii) What is the subtree rooted at g?

Solution: 
(i) The parent of c is b. The children of g are h, i, and j. 

The siblings of h are i and j. The ancestors of e are 
c, b, and a. The descendants of b are c, d, and e. 

(ii) The internal vertices are a, b, c, g, h, and j. The 
leaves are d, e, f, i, k, l, and m.  

(iii) We display the subtree rooted at g.
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m-ary Rooted Trees

Definition: A rooted tree is called an m-ary tree if every internal vertex has no 
more than m children. The tree is called a full m-ary tree if every internal vertex 
has exactly m children. An m-ary tree with m=2 is called a binary tree.

Example: Are the following rooted trees full m-ary trees for some positive integer m?

Solution: 
T1 is a full binary tree because each of its internal vertices has two children. 
T2 is a full 3-ary tree because each of its internal vertices has three children. 
In T3 each internal vertex has five children, so T3 is a full 5-ary tree. 
T4 is not a full m-ary tree for any m because some of its internal vertices have two children and others 
have three children. 11



Ordered Rooted Trees

Definition: An ordered rooted tree (有序根树) is a rooted tree where the children of each internal 
vertex are ordered.

• We draw ordered rooted trees so that the children of each internal vertex are shown in order 
from left to right.

Definition: A binary tree (二叉树) is an ordered rooted tree where each internal vertex has at most 
two children. If an internal vertex of a binary tree has two children, the first is called the left child 
and the second the right child. The tree rooted at the left child of a vertex is called the left subtree 
of this vertex, and that rooted at the right child of a vertex is called the right subtree of this vertex.

Example:  Consider the binary tree T. 
(i)  What are the left and right children of d? 

(ii)  What are the left and right subtrees of c?

Solution: 

(i) The left child of d is f and the right child is g. 

(ii) The left and right subtrees of c are displayed in                                                                                     
(b) and (c). 12



Properties of Trees

Theorem 2: A tree with n vertices has n−1 edges.

Proof (by mathematical induction):
BASIS STEP: When n=1, a tree with one vertex has no edges. Hence, 
the theorem holds when n=1. 
INDUCTIVE STEP: Assume that every tree with k vertices has k−1
edges. 
Suppose that a tree T has k+1 vertices and that v is a leaf of T. Let w be 
the parent of v. Removing the vertex v and the edge connecting w to v
produces a tree T′ with k vertices. By the inductive hypothesis, T′ has 
k−1 edges. Because T has one more edge than T′, we see that T has k
edges. This completes the inductive step.
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Counting Vertices in Full m-Ary Trees

Theorem 3: A full m-ary tree with i internal vertices has  n = mi + 1
vertices.

Proof : Every vertex, except the root, is the child of an internal vertex. 
Because each of the i internal vertices has m children, there are mi
vertices in the tree other than the root. Hence, the tree contains n = mi 
+ 1 vertices.
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Counting Vertices in Full m-Ary Trees (continued)

Theorem 4: A full m-ary tree with 
(i)

(ii)

(iii)

Proof (of part i): Solving for i in n = mi + 1 (from Theorem 3) gives i
= (n − 1)/m.  Since each vertex is either a leaf or an internal vertex,  n
= l + i. By solving for l and using the formula for i, we see that

n vertices has i = (n − 1)/m internal vertices and l = [(m − 1)n + 1]/m leaves,

i internal vertices has  n = mi + 1 vertices and l = (m − 1)i + 1 leaves, 

l leaves has  n = (ml − 1)/(m − 1) vertices and i = (l − 1)/ (m − 1)   internal vertices.

proofs of parts 
(ii) and (iii) 
are left as 
take-home 
assignments

l = n − i = n − (n −  1)/m = [(m − 1)n + 1]/m .
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Level of vertices and height of trees

• When working with trees, we often want to have rooted trees where the subtrees at 
each vertex contain paths of approximately the same length

• To make this idea precise we need some definitions:
• The level of a vertex in a rooted tree is the length of the unique path from the root to this vertex  
• The height of a rooted tree is the maximum of the levels of the vertices 

Example: 
(i)  Find the level of each vertex in the tree to the right.                        
(ii)  What is the height of the tree?

Solution: 
(i) The root a is at level 0. Vertices b, j, and k are at level 1.  

Vertices c, e, f, and l are at level 2. Vertices d, g, i, m, and n are at level 3. 
Vertex h is at level 4. 

(ii) The height is 4, since 4 is the largest level of any vertex. 
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Balanced m-Ary Trees

Definition: A rooted m-ary tree of height h is balanced if all leaves are 
at levels h or h−1. 

Example: Which of the rooted trees shown below is balanced?

Solution: T1 and T3 are balanced, but T2 is not because it has leaves at 
levels 2, 3, and 4. 
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The Bound for the Number of Leaves in an m-Ary Tree

Theorem 5: There are at most mh leaves in an m-ary tree of height h.
Proof (by mathematical induction on height): 
BASIS STEP: Consider an m-ary trees of height 1. The tree consists of a root and no more than m
children, all leaves. Hence, there are no more than m1 = m leaves in an m-ary tree of height 1.
INDUCTIVE STEP: Assume the result is true for all m-ary trees of height < h. Let T be an m-ary tree of 
height h. The leaves of T are the leaves of the subtrees of T we get when we delete the edges from the 
root to each of the vertices of level 1. 

Each of these subtrees has height ≤ h−1. By the inductive hypothesis, each of these subtrees has at 
most mh−1 leaves. Since there are at most m such subtees, there are at most mmh−1 = mh leaves in 
the tree. 

18



Tree Traversal

• Traversal Algorithms

• Infix, Prefix, and Postfix Notation
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Tree Traversal

• Procedures for systematically visiting every vertex of an ordered tree 
are called traversals (遍历)

• The three most commonly used traversals are preorder traversal (前
序遍历), inorder traversal (中序遍历), and postorder traversal (后序
遍历)

20



Preorder Traversal

Definition: Let T be an ordered rooted tree with root r. If T consists 
only of r, then r is the preorder traversal of T. Otherwise, suppose that 
T1, T2, …, Tn are the subtrees of r from left to right in T. The preorder 
traversal begins by visiting r, and continues by traversing T1 in 
preorder, then T2 in preorder, and so on, until Tn is traversed in 
preorder.
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Preorder Traversal (continued)

procedure  preorder (T: ordered rooted tree)
r := root of T
list r
for each child c of r from left to right

T(c) := subtree with c as root
preorder(T(c))
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Inorder Traversal

Definition: Let T be an ordered rooted tree with root r. If T consists 
only of r, then r is the inorder traversal of T. Otherwise, suppose that 
T1, T2, …, Tn are the subtrees of r from left to right in T. The inorder
traversal begins by traversing T1 in inorder, then visiting r, and 
continues by traversing T2 in inorder, and so on, until Tn is traversed in 
inorder. 
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Inorder Traversal (continued)

procedure  inorder (T: ordered rooted tree)
r := root of T
if r is a leaf then list r
else

l := first child of r from left to right
T(l) := subtree with l as its root
inorder(T(l))
list(r)
for each child c of r from left to right

T(c) := subtree with c as root
inorder(T(c))
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Postorder Traversal

Definition: Let T be an ordered rooted tree with root r. If T consists 
only of r, then r is the postorder traversal of T. Otherwise, suppose 
that T1, T2, …, Tn are the subtrees of r from left to right in T. The 
postorder traversal  begins by traversing T1 in postorder, then T2 in 
postorder, and so on, after Tn is traversed in postorder, r is visited. 

25



Postorder Traversal (continued)

procedure  postordered (T: ordered rooted tree)
r := root of T
for each child c of r from left to right

T(c) := subtree with c as root
postorder(T(c))

list r
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Expression Trees

• Complex expressions can be represented using ordered rooted trees

• Consider the expression ((x + y) ↑ 2 ) + ((x − 4)/3)

• A binary tree for the expression can be built from the bottom up, as is 
illustrated here
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Infix Notation

• An inorder traversal of the tree representing an expression produces 
the original expression when parentheses are included except for unary 
operations, which now immediately follow their operands

• We illustrate why parentheses are needed with an example that 
displays three trees all yield the same infix representation (中缀表示)
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Prefix Notation

• When we traverse the rooted tree representation of an 
expression in preorder, we obtain the prefix form (前缀
形式) of the expression. Expressions in prefix form are 
said to be in Polish notation (波兰记法), named after 
the Polish logician Jan Łukasiewicz

• Operators precede their operands in the prefix form of 
an expression. Parentheses are not needed as the 
representation is unambiguous

• The prefix form of ((x + y) ↑ 2 ) + ((x − 4)/3) is              
+ ↑ + x y 2 / − x 4 3

• Prefix expressions are evaluated by working from right 
to left. When we encounter an operator, we perform the 
corresponding operation with the two operations to the 
right

Jan Łukasiewicz
(1878-1956)

Example: We show the steps 
used to evaluate a particular 
prefix expression:
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Postfix Notation

• We obtain the postfix form (后缀形式) of an 
expression by traversing its binary trees in 
postorder. Expressions written in postfix form 
are said to be in reverse Polish notation (逆波
兰记法)

• Parentheses are not needed as the postfix form 
is unambiguous

• The postfix form of ((x + y) ↑ 2 ) + ((x − 4)/3) is 
x y + 2 ↑ x 4 − 3 / +

• A binary operator follows its two operands. So, 
to evaluate an expression one works from left to 
right, carrying out an operation represented by 
an operator on its preceding operands 

Example: We show the steps 
used to evaluate a particular 
postfix expression.
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