D\ APIK S 15 A R

School of Informatics Xiamen University

(4B W RSEIERHSER)

(National Characteristic Demonstration Software School)

CEBEFD
Chapter 11: Trees

RS R
o * (I) 9\ School of Informatics Xiamen University
Outhn (v) (e mmmnsm)

* Introduction to Trees

* Tree Traversal

* Spanning Trees (& A%)

 Minimum Spanning Trees (& /)N & B HY)

o (i) AR S 15 5
>> Spanning Trees) eicrzicnss
* Spanning Trees
* Depth-First Search
* Breadth-First Search
* Depth-First Search 1in Directed Graphs

(G AR S s

>> Spanning Trees () werzmnnnin

Definition: Let G be a simple graph. A spanning tree of G 1s a subgraph of G that
1s a tree containing every vertex of G. ; b . d

Example: Find the spanning tree of this simple graph:

e 8

Solution: The graph is connected, but is not a tree because it contains simple
circuits. Remove the edge {a, e}. Now one simple circuit is gone, but the
remaining subgraph still has a simple circuit. Remove the edge {e, f} and then the
edge {c, g} to produce a simple graph with no simple circuits. It is a spanning tree,
because it contains every vertex of the original graph.

a b c d a b Fod d a b C d

e g e

Edge removed: {«, «

(a) (b) (c)

o) AN AL s

) (45 B IR SENEIR PRS2 TR

>> Spanning Trees (continued)

Theorem: A simple graph 1s connected if and only if 1t has a spanning tree.

Proof: Suppose that a simple graph G has a spanning tree 7. T contains
every vertex of G and there is a path in 7" between any two of its vertices.
Because T 1s a subgraph of G, there 1s a path in G between any two of its
vertices. Hence, G is connected.

Now suppose that G is connected. If G 1s not a tree, it contains a simple
circuit. Remove an edge from one of the simple circuits. The resulting
subgraph i1s still connected because any vertices connected via a path
containing the removed edge are still connected via a path with the
remaining part of the simple circuit. Continue in this fashion until there are
no more simple circuits. A tree is produced because the graph remains
connected as edges are removed. The resulting tree is a spanning tree
because it contains every vertex of G.

e 0\ JE PR S 1R R

>> Depth-First Search \ (" BRI LRSI

* To use depth-first search to build a spanning tree for a connected
simple graph first arbitrarily choose a vertex of the graph as the root

* Form a path starting at this vertex by successively adding vertices and edges,
where each new edge is incident with the last vertex in the path and a vertex
not already in the path. Continue adding vertices and edges to this path as long
as possible

* If the path goes through all vertices of the graph, the tree consisting of this
path is a spanning tree

* Otherwise, move back to the next to the last vertex in the path, and 1f possible,
form a new path starting at this vertex and passing through vertices not already
visited. If this cannot be done, move back another vertex in the path

* Repeat this procedure until all vertices are included in the spanning tree

y (- /Q‘kik T«:- -&.-—J'—-B*u

>> Depth-First Search (continued)) weiszizas

Example: Use depth-first search to find a spanning tree of this graph.

4

b
Solution: We start arbitrarily with vertex /. We build a path by successively addlng an
edge that connects the last vertex added to the path and a vertex not already in the path, as
long as this is possible. The result is a path that connects f, g, &, k, and j. Next, we return
to k, but find no new vertices to add. So, we return to 4 and add the path with one edge
that connects /# and i. We next return to f, and add the path connecting f, d, e, ¢, and a.
Finally, we return to ¢ and add the path connecting ¢ and 5. We now stop because all
vertices have been added. s - |

(a) (b) (c) (d) (e)

(T ANAS masm

>> Depth-First Search (continued) W) werezmnsnim

* The edges selected by depth-first search of a graph are called free
edges. All other edges of the graph must connect a vertex to an
ancestor or descendant of the vertex 1n the graph. These are called
back edges

* In this figure, the tree edges are shown with heavy blue lines. The two
thin black edges are back edges

~.

a

-~

b

G ATAS s

>> Depth-First Search Algorithm O e

* We now use pseudocode to specify depth-first search. In this recursive
algorithm, after adding an edge connecting a vertex v to the vertex w, we
finish exploring w before we return to v to continue exploring from v

procedure DFS(G: connected graph with vertices v, v, ..., v,)
T := tree consisting only of the vertex v,
visit(v,)

procedure visit(v: vertex of G)

for each vertex w adjacent to v and not yetin 7'
add vertex w and edge {v,w} to T
Visit(w)

o0\ JE PR S 1E L SR

>> Breadth-First Search) peizzianne

* We can construct a spanning tree using breadth-first search. We first
arbitrarily choose a root from the vertices of the graph

* Then we add all of the edges incident to this vertex and the other endpoint of
each of these edges. We say that these are the vertices at level 1

* For each vertex added at the previous level, we add each edge incident to this
vertex, as long as it does not produce a simple circuit. The new vertices we
find are the vertices at the next level

 We continue in this manner until all the vertices have been added and we have
a spanning tree

(€0 RTIA S B 5w

1)) (140t s vk A e

>> Breadth-First Search (continued)

Example: Use breadth-first search to find a spanning tree for this graph.

[m

Solution: We arbitrarily choose vertex e as the root. We then add the edges from e to b, d,
£, and i. These four vertices make up level 1 in the tree. Next, we add the edges from b to
a and c, the edges from d to 4, the edges from fto j and g, and the edge from i to k. The
endpoints of these edges not at level 1 are at level 2. Next, add edges from these vertices
to adjacent vertices not already 1n the graph. So, we add edges from g to / and from £ to
m. We see that level 3 1s made up of the vertices / and m. This is the last level because
there are no new vertices to find.

(i) AR S B s

>> Breadth-First Search Algorithm () peirmannin

* We now use pseudocode to describe breadth-first search

procedure BFS(G: connected graph with vertices v, v,, ..., v,)
T := tree consisting only of the vertex v,
L = empty list visit(v,)
put v, in the list L of unprocessed vertices
while L is not empty
remove the first vertex, v, from L
for each neighbor w of v
if w1s not in L and not in 7 then
add w to the end of the list L
add wand edge {v,w} to T

o\ AP RS

>> Depth-First Search in Directed Graphs Q) wiczzianmn

* Both depth-first search and breadth-first search can be easily modified to run on a
directed graph. But the result is not necessarily a spanning tree, but rather a
spanning forest

Example: For the graph in (a), if we b . 4
begin at vertex a, depth-first search “ 4 =
adds the path connecting a, b, ¢, and g.

b h
At g, we are blocked, so we return to _
c. Next, we add the path connecting /' e *: d =*"’; h y ! s
to e. Next, we return to a and find that 8 8

we cannot add a new path. So, we
begin another tree with d as its root. . .
We find that this new tree consists of ¢ J e § j
the path connecting the vertices d, 4, /, (a) (b)

k, and j. Finally, we add a new tree,

which only contains i, its root.

(i) ANASL Easm

>> Applications: Google Search Engines W weicrmnngin

* To index websites, search engines such as Google systematically
explore the web starting at known sites. The programs that do this
exploration are known as Web spiders

* A web spider 1s a computer program that’s used to search and automatically
index website content

Controller

(Scheduler)
» /
N\ / :
\ P
- URL
Detector
URLs /

. W A
Content
Downloader - Lexer —_— Biocanaat
g‘- //’ 1\
/'”!’ '/’

e

/ /
/ ’/
—

() ANAS B s

>> Applications: Google Search Engines W weicrmnngin

* How does a web spider search and automatically index website
content?
* Start from a seed set: a list of URLSs to visit, denoted by U
* Visit hyperlinks in the pages and add them to crawl frontier

* Depth first search or breadth first search

Crawling approach: Fontiers, O ¢ (
(1) Get next URL u from U {é}&
(2) Download the webpage of u //U/ -.

URL Frontier: contains URLSs yet to (Co) |
be fetched \ N/ .

— URLSs from the frontier are recursively e
visited according to a set of policies History

2o\ AP A S 1E AR

>> Applications: Google Search Engines (Continued) 7=t i

* Depth-first search
* Start from the 1nitial page, follow one link after another until the path ends,
then move on to another starting page and continue tracking the links
e Breadth-first search

 Directly insert each first-level link found on the downloaded web page at the
end of the URL queue to be crawled

Depth-first crawling order: 4 A _
A-B-D-E-I-C-F-G-H B 2
Breadth-first crawling order: D) (E) (F) (6 H

A-B-C-D-E-F-G-H-1I |

(€0 RTIA S B 5w

M) (1o vemsm ean e

>> Minimum Spanning Trees

* Minimum Spanning Trees

* Algorithms for Minimum Spanning Trees

(i) AR S B s

)__/' 45 B LR ST R AR PR FR)

>> Minimum Spanning Trees

Definition: Graphs that have a number assigned to each edge are called weighted
graphs.

Example: A company plans to build a communications network connecting its
five computer centers. Vertices represent computer centers, edges represent
possible leased lines, and the weights on edges are the monthly lease rates of the

lines represented by the edges. $2000

Denver
Which links should be made to ensure that there «
1s a path between any two computer centers so $2200

that the total cost of the network 1s minimized?

San Francisco

Atlanta

Solution: We can solve this problem by finding a spanning tree so that the sum
of the weights of the edges of the tree 1s minimized. Such a spanning tree is
called a minimum spanning tree.

/>> Minimum Spanning Trees

(i

Definition: A minimum spanning tree 1n a connected weighted graph is a
spanning tree that has the smallest possible sum of weights of its edges.

Example: Design a minimum-cost communications network connecting all the
computers represented by the graph?

Chicago New York

San Francisco

2900
Denver

Atlanta

Solution: How about using brute force?

P ASF1ERSR
School of Informatics Xiamen Universit

Scl of Informatics Xiamen University
(45 B TRSE R AR TR 22 PR)
(National Characteristic Demanstration Software School!

>>> Algorithms for Finding Minimum Spanning Trees (@)

Recall: In Section 3.1 a greedy algorithm 1s a procedure that makes an optimal
choice at each of its steps. Optimizing at each step does not guarantee that the
optimal overall solution 1s produced. However, the two algorithms presented in
this section for constructing minimum spanning trees are greedy algorithms that
do produce optimal solutions.

The first algorithm was discovered by Vojtéch Jarnik in 1930
The second algorithm was discovered by Joseph Kruskal in 1956

Vojtéch Jarnik
(1897-1970)

Joseph Kruskal
(1928-2010)

>>> Prim’s algorithm
Vojtéch Jarnik

Suppose the graph has n edges, b B (1897-1970)

* Begin by choosing any edge with smallest weight, putting it into the spanning tree

* Successively add to the tree edges of minimum weight that are incident to a vertex
already in the tree, never forming a simple circuit with those edges already in the
tree

* Stop when n-1 edges have been added

ALGORITHM 1 Prim’s Algorithm.

procedure Prim(G: weighted connected undirected graph with n vertices)
T := a minimum-weight edge
fori:=1ton-2
e := an edge of minimum weight incident to a vertex in 7 and not forming a
simple circuitin 7 if added to T
T := T with e added
return 7" {7 is a minimum spanning tree of G}

21

o) A A S 15 5w

>> Prim’s algorithm W weicrzinsinii

* Example: Use Prim s algorithm to design a minimum-cost communications
network connecting all the computers represented by the graph

$2000

New York Choice Edge Cost
_ Q0 {Chicago, Atlanta} $ 700
\(){}0 G\ -

San Francisco 1
Denve 2 { Atlanta, New York} $ 800
3 {Chicago, San Francisco} $1200
4 {San Francisco, Denver} $ 900
Atlanta Total: $3600

* Solution: We solve this problem by finding a minimum spanning tree in the graph.
Prim’s algorithm is carried out by choosing an initial edge of minimum weight and
successively adding edges of minimum weight that are incident to a vertex in the
tree and that do not form simple circuits. The edges in color show a minimum
spanning tree produced by Prim’s algorithm, with the choice made at each step
displayed.

N
[\

>> Kruskal’s algorithm

Suppose the graph has n edges, e\ (1928-2010)

* Begin by choosing an edge in the graph with minimum weight, putting it into the
spanning tree

* Successively add edges with minimum weight that do not form a simple circuit with
those edges already chosen

* Stop after n-1 edges have been selected

ALGORITHM 2 Kruskal’s Algorithm.

procedure Kruskal(G: weighted connected undirected graph with n vertices)
T := empty graph
fori:=1ton—-1
e := any edge in G with smallest weight that does not form a simple circuit
when added to T
T := T with e added
return 7" {7 is a minimum spanning tree of G}

23

(2T \ /grhu; “1"%%1&.
\) X

>> Kruskal’s algorithm

* Example: Use Kruskal's algorithm to find a minimum spanning tree in the

weighted graph
Choice Edge Weight

a 2 b 3 C 1 d 1 {c, d} 1
° @ °)) (k, 1) I
3 {b, f} 1

3 1 2 5 4 {c, g} 2
5 la, b} 2

L 4 f’ 3 8 3 oh 6 {fj} 2
7 {b, c} 3

8 { &3 3

4 2 4 3 0 (g, h) 3
10 {i, j} 3

® 3 ° 3 ® : ® 11 {a, e} 3
i J k ! Total: 2

24

>>> Proof for Prim’s algorithm) (iR RS

Proof: Let G be a connected weighted graph. Suppose that the successive edges chosen by
Prim’s algorithm are ¢, e,, ..., ¢,_,. Let S be the tree with ¢, ¢,, ..., ¢,_; as its edges, and let S,
be the tree with e, e,, ..., ¢, as its edges. Let 7" be a minimum spanning tree of G containing the
edges e, e, ..., ¢, where k is the maximum integer with the property that a minimum spanning

tree exists containing the first k edges chosen by Prim’s algorithm. The theorem follows if we
can show that S = T.

Suppose that S # 7, so that Kk <n—1. Consequently, 7 contains e, e,, ..., ¢, but
not ¢, ;. Consider the graph made up of 7" together with ¢, ,. Because this graph is connected
and has n edges, too many edges to be a tree, it must contain a simple circuit. This simple cir-
cuit must contain ¢, ., because there was no simple circuit in 7. Furthermore, there must be an
edge in the simple circuit that does not belong to S, ., because S, ., is a tree. By starting at an
endpoint of ¢, , that is also an endpoint of one of the edges ¢, ..., ¢;, and following the circuit
until it reaches an edge not in S, ;, we can find an edge e not in S, that has an endpoint that
is also an endpoint of one of the edges ¢,, e,, ..., ¢;.

By deleting ¢ from 7' and adding ¢, ;, we obtain a tree 7" with n — 1 edges (it is a tree
because it has no simple circuits). Note that the tree 7” contains ¢, e,, ..., ¢, ¢, ,. Furthermore,
because ¢, , was chosen by Prim’s algorithm at the (k + I)st step, and e was also available at
that step, the weight of ¢, is less than or equal to the weight of e. From this observation, it
follows that 77 is also a minimum spanning tree, because the sum of the weights of its edges
does not exceed the sum of the weights of the edges of 7. This contradicts the choice of k as
the maximum integer such that a minimum spanning tree exists containing e, ..., ¢;. Hence,

k=n—1,and S = T. It follows that Prim’s algorithm produces a minimum spanning tree. <l »

B KRS 155K

School of Informatics Xiamen University

(45 B ST R FF 52 PR

(National Characteristic Demonstration Software School)

MINMIOmMmmoom
MMM

08
M

[T

Ay

