
《离散数学》

Chapter 11：Trees（II）
王晓黎

2025年12月19日



Outline

• Introduction to Trees

• Tree Traversal

• Spanning Trees (生成树)

• Minimum Spanning Trees (最小生成树)

2



Spanning Trees

• Spanning Trees

• Depth-First Search

• Breadth-First Search

• Depth-First Search in Directed Graphs



Spanning Trees

Definition: Let G be a simple graph. A spanning tree of G is a subgraph of G that 
is a tree containing every vertex of G. 

Example: Find the spanning tree of this simple graph:

Solution: The graph is connected, but is not a tree because it contains simple 
circuits. Remove the edge {a, e}. Now one simple circuit is gone, but the 
remaining subgraph still has a simple circuit. Remove the edge {e, f} and then the 
edge {c, g} to produce a simple graph with no simple circuits. It is a spanning tree, 
because it contains every vertex of the original graph. 



Spanning Trees (continued)

Theorem: A simple graph is connected if and only if it has a spanning tree.

Proof: Suppose that a simple graph G has a spanning tree T. T contains 
every vertex of G and there is a path in T between any two of its vertices. 
Because T is a subgraph of G, there is a path in G between any two of its 
vertices. Hence, G is connected. 

Now suppose that G is connected. If G is not a tree, it contains a simple 
circuit. Remove an edge from one of the simple circuits. The resulting 
subgraph is still connected because any vertices connected via a path 
containing the removed edge are still connected via a path with the 
remaining part of the simple circuit. Continue in this fashion until there are 
no more simple circuits. A tree is produced because the graph remains 
connected as edges are removed. The resulting tree is a spanning tree 
because it contains every vertex of G. 



Depth-First Search

• To use depth-first search to build a spanning tree for a connected 
simple graph first arbitrarily choose a vertex of the graph as the root 
• Form a path starting at this vertex by successively adding vertices and edges, 

where each new edge is incident with the last vertex in the path and a vertex 
not already in the path. Continue adding vertices and edges to this path as long 
as possible

• If the path goes through all vertices of the graph, the tree consisting of this 
path is a spanning tree

• Otherwise, move back to the next to the last vertex in the path, and if possible, 
form a new path starting at this vertex and passing through vertices not already 
visited. If this cannot be done, move back another vertex in the path

• Repeat this procedure until all vertices are included in the spanning tree



Depth-First Search (continued)

Example: Use depth-first search to find a spanning tree of this graph.

Solution: We start arbitrarily with vertex f. We build a path by successively adding an 
edge that connects the last vertex added to the path and a vertex not already in the path, as 
long as this is possible. The result is a path that connects  f, g, h, k, and j. Next, we return 
to k, but find no new vertices to add. So, we return to h and add the path with one edge 
that connects h and i. We next return to f, and add the path connecting f, d, e, c, and a. 
Finally, we return to c and add the path connecting c and b. We now stop because all 
vertices have been added. 



Depth-First Search (continued)

• The edges selected by depth-first search of a graph are called tree 
edges. All other edges of the graph must connect a vertex to an 
ancestor or descendant of the vertex in the graph. These are called 
back edges

• In this figure, the tree edges are shown with heavy blue lines. The two 
thin black edges are back edges 



Depth-First Search Algorithm

• We now use pseudocode to specify depth-first search. In this recursive 
algorithm, after adding an edge connecting a vertex v to the vertex w, we 
finish exploring w before we return to v to continue exploring from v

procedure DFS(G: connected graph with vertices v1, v2, …, vn)
T := tree consisting only of the vertex v1

visit(v1)

procedure visit(v: vertex of G)
for each vertex w adjacent to v and not yet in T

add vertex w and edge {v,w} to T
visit(w)



Breadth-First Search

• We can construct a spanning tree using breadth-first search. We first 
arbitrarily choose a root from the vertices of the graph
• Then we add all of the edges incident to this vertex and the other endpoint of 

each of these edges. We say that these are the vertices at level 1
• For each vertex added at the previous level, we add each edge incident to this 

vertex, as long as it does not produce a simple circuit. The new vertices we 
find are the vertices at the next level

• We continue in this manner until all the vertices have been added and we have 
a spanning tree



Breadth-First Search (continued)

Example: Use breadth-first search to find a spanning tree for this graph. 

Solution: We arbitrarily choose vertex e as the root. We then add the edges from e to  b, d, 
f, and i. These four vertices make up  level 1 in the tree. Next, we add the edges from b to 
a and c, the edges from d to h, the edges from f to j and g, and the edge from i to k. The 
endpoints of these edges not at level 1 are at level 2. Next, add edges from these vertices 
to adjacent vertices not already in the graph. So, we  add edges from g to l and from k to 
m. We see that level 3 is made up of the vertices l and m.  This is the last level because 
there are no new vertices to find.



Breadth-First Search Algorithm

• We now use pseudocode to describe breadth-first search

procedure BFS(G: connected graph with vertices v1, v2, …, vn)
T := tree consisting only of the vertex v1

L := empty list visit(v1)
put v1 in the list L of unprocessed vertices
while L is not empty

remove the first vertex, v, from L
for each neighbor w of v

if w is not in L and not in T then
add  w to the end of the list L
add  w and edge {v,w} to T



Depth-First Search in Directed Graphs

• Both depth-first search and breadth-first search can be easily modified to run on a 
directed graph. But the result is not necessarily a spanning tree, but rather a 
spanning forest

Example: For the graph in (a), if we 
begin at vertex a, depth-first search 
adds the path connecting a, b, c, and g. 
At g, we are blocked, so we return to 
c. Next,  we add the path connecting f
to e. Next, we return to a and find that 
we cannot add a new path. So, we 
begin another tree with d as its root.  
We find that this new  tree consists of 
the path connecting the vertices d, h, l, 
k, and j.  Finally, we add a new tree, 
which only contains i, its root.



Applications: Google Search Engines 

• To index websites, search engines such as Google systematically 
explore the web starting at known sites. The programs that do this 
exploration are known as Web spiders
• A web spider is a computer program that’s used to search and automatically 

index website content



Applications: Google Search Engines 

• How does a web spider search and automatically index website 
content?
• Start from a seed set: a list of URLs to visit, denoted by U

• Visit hyperlinks in the pages and add them to crawl frontier

• Depth first search or breadth first search

Crawling approach:

(1) Get next URL u from U

(2) Download the webpage of u

URL Frontier: contains URLs yet to 
be fetched

– URLs from the frontier are recursively 
visited according to a set of policies

U



Applications: Google Search Engines (Continued) 

• Depth-first search
• Start from the initial page, follow one link after another until the path ends, 

then move on to another starting page and continue tracking the links

• Breadth-first search
• Directly insert each first-level link found on the downloaded web page at the 

end of the URL queue to be crawled

Depth-first crawling order：

A-B-D-E-I-C-F-G-H

Breadth-first crawling order：

A-B-C-D-E-F-G-H-I



Minimum Spanning Trees

• Minimum Spanning Trees

• Algorithms for Minimum Spanning Trees 



Minimum Spanning Trees

Definition: Graphs that have a number assigned to each edge are called weighted 
graphs. 

Example: A company plans to build a communications network connecting its 
five computer centers. Vertices represent computer centers, edges represent 
possible leased lines, and the weights on edges are the monthly lease rates of the 
lines represented by the edges. 

Which links should be made to ensure that there 
is a path between any two computer centers so 
that the total cost of the network is minimized? 

Solution: We can solve this problem by finding a spanning tree so that the sum 
of the weights of the edges of the tree is minimized. Such a spanning tree is 
called a minimum spanning tree.



Minimum Spanning Trees

Definition: A minimum spanning tree in a connected weighted graph is a 
spanning tree that has the smallest possible sum of weights of its edges. 

Example: Design a minimum-cost communications network connecting all the 
computers represented by the graph? 

Solution: How about using brute force?



Algorithms for Finding Minimum Spanning Trees

Recall: In Section 3.1 a greedy algorithm is a procedure that makes an optimal 
choice at each of its steps. Optimizing at each step does not guarantee that the 
optimal overall solution is produced. However, the two algorithms presented in 
this section for constructing minimum spanning trees are greedy algorithms that 
do produce optimal solutions. 

The first algorithm was discovered by Vojtěch Jarník in 1930 

The second algorithm was discovered by Joseph Kruskal in 1956 

Vojtěch Jarník
(1897-1970)

Joseph Kruskal
(1928-2010)



Prim’s algorithm 

Suppose the graph has n edges,

• Begin by choosing any edge with smallest weight, putting it into the spanning tree

• Successively add to the tree edges of minimum weight that are incident to a vertex 
already in the tree, never forming a simple circuit with those edges already in the 
tree

• Stop when n-1 edges have been added

21

Vojtěch Jarník
(1897-1970)



Prim’s algorithm 

22

• Example: Use Prim’s algorithm to design a minimum-cost communications 
network connecting all the computers represented by the graph

• Solution: We solve this problem by finding a minimum spanning tree in the graph. 
Prim’s algorithm is carried out by choosing an initial edge of minimum weight and 
successively adding edges of minimum weight that are incident to a vertex in the 
tree and that do not form simple circuits. The edges in color show a minimum 
spanning tree produced by Prim’s algorithm, with the choice made at each step 
displayed. 



Kruskal’s algorithm

Suppose the graph has n edges,

• Begin by choosing an edge in the graph with minimum weight, putting it into the 
spanning tree

• Successively add edges with minimum weight that do not form a simple circuit with 
those edges already chosen

• Stop after n-1 edges have been selected

23

Joseph Kruskal
(1928-2010)



Kruskal’s algorithm

24

• Example: Use Kruskal’s algorithm to find a minimum spanning tree in the 
weighted graph 



Proof for Prim’s algorithm 

25



Q&A


