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Abstract—Satisfiability Modulo Theories (SMT) based network
configuration verification tools are powerful tools in preventing
network configuration errors. However, their fundamental limi-
tation is efficiency, because they rely on generic SMT solvers to
solve SMT problems, which are in general NP-complete. In this
paper, we show that by leveraging network domain knowledge,
we can substantially accelerate SMT-based network configuration
verification. Our key insights are: given a network configuration
verification formula, network domain knowledge can (1) guide
the search of solutions to the formula by avoiding unnecessary
search spaces; and (2) help simplify the formula, reducing the
problem scale. We leverage these insights to design a new SMT-
based network configuration verification tool called NetSMT.
Extensive evaluation using real-world topologies and synthetic
network configurations shows that NetSMT achieves orders of
magnitude improvements compared to state-of-the-art methods.

I. INTRODUCTION

Network misconfigurations are prevalent in all types of
networks (e.g., enterprise networks, wide area networks, and
data center networks). They could cause network errors such
as forwarding loops, blackholes, and waypoint violations and
lead to disastrous financial and social consequences [1]–
[4]. A major advance to prevent such misconfigurations is
network configuration verification (also called control plane
verification interchangeably, or CPV for short). It analyzes the
configuration files of network devices [5]–[16] to determine
whether these configurations would compute forwarding tables
conforming to pre-specified network invariants (e.g., reacha-
bility, waypointing, and loop-freeness) had they been deployed
on the network devices. Among various CPV tools, SMT-
based tools [5], [7], [17] are advantageous over simulation-
based [6], [8], [9], [14], [15] and graph-based [12], [13] tools
in terms of capability, because they support verifying diverse
routing protocols in all possible converged states. Specifically,
they encode the conjunction of network configurations and the
negation of network invariants as an SMT formula (we call it
the verification formula), and use off-the-shelf SMT solvers
(e.g., [18], [19]) to examine its satisfiability. A satisfiable
solution to the verification formula indicates that the network
configurations are erroneous.
SMT-based CPV tools are inefficient. Despite the capability
advantage, these SMT-based tools suffer from low perfor-
mance efficiency. Specifically, deciding the satisfiability of an
SMT formula is NP-complete. When the size of the network
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(in terms of the number of nodes and links) or network
configurations (in terms of configuration lines) increases, the
scale of the corresponding verification formula also increases,
resulting in an exponentially increasing latency to verify
the correctness of network configurations. As a result, it is
difficult to deploy SMT-based CPV in large-scale production
networks. For example, Minesweeper [7] cannot verify k-
failure-reachability within 1 hour for a 125-node network
where k is set to 3.
Fundamental reason for low efficiency: ignorance of net-
work domain knowledge. First, SMT-based CPV tools rely
on off-the-shelf SMT solvers, which ignore the control flow
information in network configurations, leading to unnecessary
testing on assignments with the same satisfiability. For exam-
ple, consider a BGP route policy matching the destination IP
prefix of received BGP route announcements and setting n
attributes of matched announcements. For any announcement,
if it matches the policy, all its n attributes will be set according
to the configuration. Situations such as an IP-matched an-
nouncement with m (m < n) attributes set will not happen and
hence should not be explored during SMT solving. However,
SMT solvers are unaware of such information and may have to
explore up to 2n− 1 redundant situations. Second, these tools
ignore the context of network configurations and invariants and
use a fixed encoding to construct the verification formula. For
example, BGP local preferences are encoded as 16-bit integers
in these tools. However, if a set of configurations only sets four
distinct values of local preferences, we can use 2-bit unsigned
bit vectors to encode local preferences, substantially reducing
the scale of the verification formula.

Some studies [10], [17], [20], [21] have attempted to
leverage network domain knowledge to tackle the efficiency
issue of SMT-based network configuration verification. How-
ever, they are point solutions whose applicability is tightly
coupled with different assumptions and perform poorly when
verifying more complex invariants (e.g., reachability under k-
link-failure). For example, Bonsai [10] leverages the symmetry
of data center network topologies to compress the verification
formula into a smaller one, but the conditions of compression
highly rely on topology symmetry. Kirigami [20] divides
the network into several partitions to verify each partition
with a smaller verification formula using an assume-guarantee
framework, but its performance relies on a manual, experience-
driven partitioning of the network and cannot verify invariants



under k-link-failure. Lightyear [21] leverages the monotonicity
to semi-automate the assume-guarantee framework for BGP
configuration verification. However, it may have false positive
verification results due to model over-approximation. BiN-
ode [17] leverages the Gao-Rexford condition in typical inter-
domain BGP policies to simplify the verification formula by
reducing variable dependencies, but it has limited effects on
configurations not conforming to the G-R condition.

In this paper, we systematically investigate the important
problem of how to leverage network domain knowledge to
accelerate SMT-based network configuration verification in
generic large-scale networks. A fast SMT-based CPV tool can
quickly find configuration errors in large networks under all
converged states, improving the reliability of networks and the
efficiency of network operation and maintenance.

To this end, we design NetSMT, a network-aware SMT-
based network configuration verification tool. Instead of con-
tinuing to search for accelerating methods for specialized set-
tings (e.g., topologies, configurations, and protocols), we aim
to make full use of network domain knowledge in verifying
generic networks. In particular, as depicted in Fig. 1, NetSMT
presents a new planner block for arranging SMT solving order
(Section III) and redesigns the encoder block for generating
SMT formulas (Section IV) to accelerate CPV. The design of
these two blocks is based on the following two key insights:
Key insight 1: network domain knowledge allows a more
efficient search of a satisfiable solution in the verification
formula. Modern SMT solvers (e.g., Z3 [18] and CVC5 [19])
use the DPLL(T) algorithm to decide the satisfiability of a
given SMT formula. However, DPLL(T) treats all the variables
in the formula as independent ones and may have to explore
the combinations of all possible variable assignments, a huge
search space, before finding a satisfiable solution. In contrast,
given a network verification formula, network domain knowl-
edge allows us to divide this huge search space into a smaller
number of equivalent classes, where variable assignments in
the same class have the same SMT satisfiability. As such, it
could substantially prune the search space and improve the
efficiency of SMT-based CPV.

To leverage this insight, before the exploration, NetSMT
first systematically arranges the exploration order of variables
in the network verification formula to avoid exploring vari-
able assignments in the same equivalent class as much as
possible. Specifically, given a formula, before the exploration
starts, NetSMT arranges branching variables (e.g., variables
corresponding to matching conditions in route policies) to be
explored firsts. Within the set of branching variables, NetSMT
arranges the ones corresponding to configurations in routers
closer to the destination to be explored first. Second, during
the exploration, NetSMT leverages the intent of operators to
first explore assignments that are more likely to be satisfiable
(i.e., network error). With these two designs, NetSMT can
substantially improve the efficiency of solving the network
verification formula over off-the-shelf SMT solvers.
Key insight 2: network domain knowledge allows a more
succinct verification formula, accelerating verification by
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Fig. 1. The architecture and workflow of NetSMT

reducing the problem scale. On one hand, the time com-
plexity of SMT solving is exponential to the scale of SMT
formulas. On the other hand, network configurations can be
complex but redundant (e.g., a route policy matching on an
obsolete IP prefix due to configuration updates). As a result,
if we can prune such redundant configurations while not affect-
ing the correctness of the verification, we can build a network
verification formula with fewer variables and constraints and
hence further improve the efficiency of SMT-based CPV tools.

To leverage this insight, during the construction of the
network verification formula, NetSMT first scans the config-
uration files to prune configurations that are unrelated to the
network invariant. For the remaining configurations, NetSMT
adopts abstract interpretation to lift the level of abstrac-
tion of long-width configuration variables (e.g., BGP local
preference) to short-width, abstract configuration variables to
reduce the size of variables in the formula. In contrast to
Shapeshifter [11], a simulation-based verification tool that
sacrifices correctness for efficiency, we prove that our lifting
design does not affect the correctness of the verification result.
Evaluation (Section V). We implement a prototype of
NetSMT and make it open-source [22]. We evaluate its
performance extensively using real-world topologies and
synthetic configurations. NetSMT remarkably outperforms
Minesweeper [7] and Binode [17].

II. MOTIVATION

In this section, we provide an overview of SMT-based
network configuration verification tools and identify the fun-
damental reason for their low efficiency. We then elaborate
on our key insights on how to leverage network domain
knowledge to accelerate SMT-based CPV.

A. Background and Fundamental Issue

SMT-based network configuration verification. Such
tools [5], [7], [17] encode the configuration files of routers
as an SMT formula N and the network invariant (e.g., reacha-
bility, loop-freeness, and waypointing) to be verified as another
SMT formula P . They then verify whether the configuration
files can guarantee the network invariant by checking whether
N =⇒ P is a tautology, which is equivalent to checking
whether N ∧ ¬P is unsatisfiable. If N ∧ ¬P is satisfiable,
it means the configuration files cannot guarantee the given
network invariant. Otherwise, the configuration files are correct
in upholding the given network invariant.
An example network. Consider a network of four routers
running BGP in Fig. 2. Router D is connected to two subnets,
10.0.0.0/24 and 10.1.0.0/24. Suppose the network invariant
to be verified is S does not reach 10.1.0.0/24. The key

2



router A
policy D to A:
if prefix == 10.0.0.0/24   

add community 910
If prefix == 10.1.0.0/24   

add community 920

router S
policy A to S:
if community == 910

set local-preference 50
if community == 920

deny
policy B to S:
if community == 930

set local-preference 200
if community == 940

permit

router B
policy D to B:
if prefix == 10.0.0.0/24       

add community 930
If prefix == 10.1.0.0/24

add community 940

10.0.0.0/24

10.1.0.0/24

S
B

A
D

Fig. 2. Example network.

configuration snippets of the routers are shown in the figure.
Specifically, A and B attach different BGP community tags
to route announcements they receive from D based on the
IP prefixes of these announcements. S sets different local
preferences to route announcements it receives from A and
B or filters them based on their attached community tags.
Step 1: Encoding network configurations. To construct
the configuration SMT formula N , SMT-based configuration
verification tools model each router’s sent and received route
messages (e.g., BGP route announcements and OSPF link state
announcements) and its selected route as symbolic records, and
model how configuration files process these symbolic records
using predicate logic. Fig. 3 illustrates how they model the
configuration of router A in Fig. 2. outDA is the symbolic
BGP route announcement D sends to A. If outDA satisfies
some basic conditions (i.e., it is a valid message conforming to
D’s export policy configurations and link (D,A) is up), router
A processes it based on A’s import policy configurations to
generate another symbolic record inDA. For example, when
the destination IP prefix of outDA is 10.0.0.0/24, a Boolean
variable inDA.valid is set to true. inDA.comm910 is also
set to true, indicating that A will attach a community tag
of value 910 to inDA. The corresponding Boolean variables
indicating the validness of all other possible values of the com-
munity tag of inDA (i.e., inDA.comm920, inDA.comm930
and inDA.comm940) are set to be the same as those of outDA,
which are false because the configuration of D does not attach
any community tag to any route announcement.
Step 2: Encoding the network invariant. An invariant
SMT formula P is usually composed of Boolean variables.
Consider the invariant in our example (i.e., S cannot reach
subnet 10.1.0.0/24). It is represented by ¬canReach1

S , where
canReach1

S is a Boolean variable representing the reachability
from S to 10.1.0.0/24 and rewritten as:

canReach1S ⇐⇒
∨

R∈{A,B}

(
datafwd1S,R ∧ canReach1R

)
, (1)

which means that S can reach 10.1.0.0/24 if and only if it
forwards traffic destined to 10.1.0.0/24 to at least one neighbor
that can reach 10.1.0.0/24. datafwd1S,R is another Boolean
variable that is true if and only if S selects R as the next hop
to 10.1.0.0/24, and the access control list (ACL) of R does
not block traffic to 10.1.0.0/24, where R is A or B.
Step 3: Solving N ∧ ¬P using an SMT solver. SMT-based
configuration verification tools rely on off-the-shelf SMT

if outDA.valid == true 
then

if failedA, D == 0
then

if outDA.prefix == 10.0.0.0/24   
then

inDA.valid = true
inDA.comm910 = true
inDA.comm920 = outDA.comm920
inDA.comm930 = outDA.comm930 
inDA.comm940 = outDA.comm940 
…

else if outDA.prefix == 10.1.0.0/24
then

inDA.valid = true
inDA.comm910 = outDA.comm910
inDA.comm920 = true
inDA.comm930 = outDA.comm930 
inDA.comm940 = outDA.comm940 
…

else inDA.valid = false
   else inDA.valid = false
else inDA.valid = false

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

Fig. 3. SMT encoding for the import policy of router A.

solvers (e.g., Z3 [18] and CVC5 [19]), which use the DPLL(T)
algorithm [23] to decide the satisfiability of a given SMT
formula. Fig. 4 shows its basic idea. In a nutshell, DPLL(T)
is composed of a Boolean satisfiability (SAT) solver [24]–
[26] and a theory solver. The latter is a procedure that takes
as input a collection of propositions and decides whether
they are satisfiable under a pre-defined theory (e.g., whether
(x + 1 < 0) ∧ (x > 0) where x is an integer is satisfiable
under the linear integer arithmetic theory).

Given a network verification formula N ∧ ¬P , during
initialization, DPLL(T) adopts the Tseitin’s transformation
method [27] to transform it into Ψ, an equivalent SMT formula
in conjunctive normal form (CNF), and replaces all atoms in
Ψ with Boolean variables to get an SAT formula B(Ψ) called
the Boolean abstraction. It then uses the SAT solver to find
M, a partial satisfiable assignment to B(Ψ) (i.e., after the
assignment, all clauses in B(Ψ) are either true or unknown,
but not false). Next, in each iteration, DPLL(T) operates in two
steps. First, it uses the theory solver to examine whether the
propositions on the atoms in Ψ corresponding to M is theory-
satisfiable. Second, if so, it uses the SAT solver to update M
by assigning as many unassigned variables in B(Ψ) as possible
while keeping M partially satisfiable. Otherwise, it updates M
by backtracking its assignment history to find a new partially
satisfiable assignment. The algorithm stops when (1) B(Ψ) is
found unsatisfiable, indicating N∧¬P is also unsatisfiable and
the configurations are correct, or (2) M becomes a complete
satisfiable assignment (i.e., all clauses become true) and its
corresponding propositions are theory-satisfiable, indicating
N ∧ ¬P is satisfiable and the configurations are erroneous.
Fig. 4 gives a simple example to illustrate DPLL(T). We refer
readers to [23] for a comprehensive tutorial on DPLL(T).
Issue: Ignoring network domain knowledge may result in
low efficiency of SMT-based CPV. Specifically, this impact
acts in two aspects. First, the DPLL(T) algorithm used in off-
the-shelf SMT solvers ignores the control flow information in
network configurations, leading to redundant explorations on
similar assignments of B(Ψ) with the same satisfiability. To
be concrete, consider an even simpler example of one router
in Fig. 5. The CNF formula Ψ of these 6 statements and
one invariant has 7 atoms and its Boolean abstraction has
7 Boolean variables. The last variable vin1.med<50 is always
false because it corresponds to the assertion ¬(in1.med < 50).
DPLL(T) treats the first 6 variables as independent ones. If
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Fig. 4. Basic idea of DPLL(T).
DPLL(T) explores the value of v2 through v6 before exploring
v1, and tries to first assign false to variables during the
exploration, it needs to explore all 26 = 64 assignments of
B(Ψ) and uses the theory-solver to examine each assignment.

In contrast, the control flow information decides that the
64 assignments of the Boolean variables in B(Ψ) can be
categorized into only 4 equivalent classes based on the value
assignment of the v1, the Boolean variable corresponding to
the branching condition failed1 == false: (1) one contain-
ing 2 assignments where the five variables are all set to true;
(2) one containing ((24 − 1) ∗ 2) = 30 assignments where the
v1 is set to true and at least one of the variables from v2 to
v5 is set to false; (3) one containing 16 assignments where v1
and v6 are set to false; and (4) one containing 16 assignments
where v1 is set to false and v6 is set to true.

Among these equivalent classes, classes 1 and 4 are all
satisfiable assignments. Unaware of these two classifications,
DPLL(T) may need to send all 16+2=18 assignments to the
theory solver. However, each class only needs to send one
assignment (i.e., v1, v2, v3, v4, v5 are true representing class 1
and (v1 = false, v6 = true) representing class 4) to the the-
ory solver. It is because the propositions of atoms correspond-
ing to unassigned variables in these two assignments need not
be considered by the theory solver. For example, because the
propositions corresponding to (v1 = false, v6 = true) are
always theory satisfiable in upholding the assertion, none of
the propositions corresponding to any assignment in class 4
can make Ψ unsatisfiable. Similarly, because the conjunction
of propositions corresponding to v1 through v5 being true
is theory satisfiable in upholding the assertion, the original
formula Ψ is satisfiable regardless of the truthfulness of the
proposition corresponding to v6.

Assignments in classes 2 and 3 are unsatisfiable and hence
do not need to be sent to the theory solver. However, if
DPLL(T) explores v2 through v6 before v1 and assigns false
first, it may need to check all 30+16=46 assignments in these
two classes. Instead, if DPLL(T) explores the assignments of
v1 first and assigns false to variables first, its SAT solver
only needs to evaluate the Boolean satisfiability of 6 partial
assignments to find out none in classes 2 and 3 is satisfiable.

Second, current SMT-based CPV tools ignore the context
of network configurations and the network invariant and use
a fixed encoding to construct the configuration formula N ,
resulting in a verification formula with redundant variables
and hence impairing the efficiency. Take the same example in
Fig. 5, the network verification formula Ψ has 6 variables.

if ( ¬fail1)
in1.valid = true              
in1.lp = 10                      
in1.comm1 = true            
in1.comm2 = false           

else                                        
in1.med = 100

assert(in1.med<50)

1.
2.
3.
4.
5.
6.
7.
8.

in1

v1
v2
v3
v4
v5

v6
v7

SMT encoding of 
configurations

variables of 
Boolean abstraction[ [] ]

Fig. 5. SMT encoding and variables of Boolean abstraction of one router

However, the invariant to verify only considers the value
of in1.med and is not interested in the value of in1.valid,
in1.lp, in1.comm1 or in1.comm2. Therefore, we can verify
the correctness of configurations in upholding this invariant
with a formula Ψ′ with only 2 variables.
B. Key Insights

To address the aforementioned fundamental issue, we now
elaborate on the key insights of NetSMT to leverage network
domain knowledge to accelerate SMT-based CPV.
Key insight 1: network domain knowledge can guide the
search for a solution to the network verification formula
by avoiding redundant search space. Given a network veri-
fication formula N ∧¬P and its CNF form Ψ, our first insight
consists in (1) leveraging the control flow of the network
configurations and network topology to arrange the exploration
order of variables in B(Ψ), its Boolean abstraction, and (2)
leveraging operators’ intent to first explore the assignments
that are more likely to lead to a satisfiable solution to Ψ (i.e.,
a network error).

Specifically, NetSMT first computes the exploration order
by designing and enforcing three guidelines of partial order
of variable exploration in B(Ψ): exploring branching variables
first (e.g., variables corresponding to branching statement in
N ∧ ¬P ), exploring variables whose residing routers are
closer to the destination router first, and exploring variables
in the same residing router in an order of received route
announcements over selected routes and over sent route an-
nouncements. Second, during the exploration, NetSMT assigns
values to variables in B(Ψ) by leveraging facts such that
operators have a clearer picture of their intent on a single
router than on the whole network and a network error must
contain a data plane path that is different from the ones
specified in the invariant P . Such assignments are closer to
the actual forwarding behavior of the configurations. As such,
if the configurations are erroneous, these assignments are more
likely to be satisfiable. These two designs substantially prune
the redundant search space of Ψ and improve the efficiency
of solving network verification formulas.
Key insight 2: network domain knowledge can help sim-
plify N ∧ ¬P , reducing the problem scale. As illustrated
from our example in Fig. 5, the network configuration formula
N may have a lot of redundancy, leading to unnecessary
large scale of the verification formula N ∧ ¬P . As such, our
second insight consists of (1) scanning the configuration files
to remove configurations that are unrelated to the invariant to
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verify, and (2) lifting the level of abstraction of long-width,
concrete variables (e.g., BGP local preference and MED)
to short-width, abstract variables that cover the number of
distinct values of the corresponding concrete variables in the
configurations. We prove the correctness of these two designs
by finding an equivalent simplification of N ∧ ¬P with the
same verification result. Although finding a minimal equivalent
simplification of N ∧¬P with no redundancy is NP-complete,
our evaluation shows that these two designs can lead to a
considerable reduction on the scale of the network verification
formula, and hence accelerating SMT-based CPV.

III. GUIDING SMT SOLVING
This section details how we use network domain knowledge

to guide the variable and assignment exploration order of SMT
solving, enhancing efficiency by avoiding redundant search.
A. Arranging the Variable Exploration Order

As previously mentioned, Ψ denotes the SMT formula
after Tseitin’s transformation, B(Ψ) denotes the Boolean
abstraction of Ψ. Additionaly, let V denote the set of all
Boolean variables in B(Ψ). V b is the set of all branching
variables where V b ⊆ V , which are variables corresponding to
branching statement in the network verification formula (e.g.,
inDA.valid and failedA,D shown in Fig. 3). Let v1 and v2
be two variables in V , we use ⪯ to express their exploration
order. We say v1 is prior to v2 if v1 ⪯ v2.

We propose three guidelines to arrange the exploration order
of variables: all branching variables are prior to other variables,
exploring branching variables whose residing routers are closer
to the destination first, and prioritizing branching variables
whose residing routers are the same by the corresponding
route announcement type. Next, we are going to detail each
guideline and the design principle of them.
Guideline 1: All branching variables are prior to other
variables. This guideline is formally expressed as follows:

∀v1 ∈ V b, v2 ∈ V \V b =⇒ v1 ⪯ v2. (2)

This guideline is inspired by control flow-guided SMT solv-
ing for program verification [28], [29]. We observe that,
like software programs, network configurations contain many
branching statements (e.g., the matching conditions in route
policies), which control the assignment of the variables within
its condition. However, generic SMT solvers are not aware of
this domain knowledge and treat the variables independently,
which may need 2n explorations for n variables in the worst
case. In fact, as Section II shows, many explorations can be
avoided by first exploring branching variables.

Considering A’s import policy shown in Fig. 3, one of
inDA.comm910 and inDA.comm920 must be set to true if
inDA.valid is set to true. However, given that the solver
treats these variables independently, it remains possible for
inDA.comm910 and inDA.comm920 to be both set to false
even when inDA.valid is true. If we first explore branching
variables, this redundant exploration can be reduced because
their assignment is restricted by the branching variables.
Guideline 2: Branching variables whose residing router is
closer to the destination are explored first. Because there

are a lot of branching variables, simply preferring branching
variables to other variables is not enough. We further prune
search space by ordering the branching variables with the
following guideline::

∀v1, v2 ∈ V b, dist(v1) < dist(v2) =⇒ v1 ⪯ v2, (3)

Dist(v) represents the distance from the router, where variable
v resides, to the destination. This guideline is motivated by
the execution process of the path-vector routing protocol. Like
software programs, the routing protocol has an execution order.
For example, router A can only send routing messages to
router S after it has received the routing message sent from
router D. Therefore, the variable exploration order should be
consistent with the routing behavior. We force it by prioritizing
branching variables based on topological position.

Consider the example network shown in Fig. 2, 10.1.0.0/24
is the destination and router D is the route origination.
So, the branching variable belonging to router D, such as
outDA.valid, has the highest priority due to the closest dis-
tance. Since the best symbolic route of router D is determined
by its possession of the connected route, the conflict can be
quickly detected by the constraint of D’s export policy even
if we wrongly assigned outDA.valid to be false.

Instead, without this order, variables such as outAS .valid
can be assigned before outDA.valid, which can be interpreted
as router A sends a routing message to S before D send out
any route message, which can not happen in reality. In this
case, if outAS .valid is wrongly assigned to be false, the solver
may take a long time to detect this conflict. For example, the
solver may also wrongly assign bestA.valid as false, meaning
that A has no route for the destination, which is wrong but
does not conflict with outAS .valid. These conflicts will not be
detected until outDA.valid is correctly assigned, which infers
inDA.valid to true and cause conflict between inDA.valid
and bestA.valid. Our experiment indicates that this scenario
happens frequently. As such, without this ordering, many
redundant explorations may happen.
Guideline 3: For branching variables residing in the
same router, we order them based on their corresponding
route announcement type. Because there are many variables
residing in the same router, we use this guideline to further
order them, which is expressed as:

∀v1, v2 ∈ V
b
, dist(v1) = dist(v2), type(v1) < type(v2) =⇒ v1 ⪯ v2, (4)

where type(v) represents the corresponding route announce-
ment type of v. In our example, there are three types of
route announcement: import, best, and export. We define
the relation import < best < export according to the routing
behavior. Considering the route exchange process, the best
route is determined by all import routes it received, and the
export route is determined by the best route. The idea behind
it is the same as Guideline 2, aiming to force the explore order
to comply with the routing behavior.
B. Arranging the Assignment Exploration Order

Although lots of explorations can be avoided by guiding
the solver to explore the variables in a particular order, con-
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flicts still happen regularly with the default value assignment
method. As a result, we propose two guidelines to guide the
assignment order of branching variables. The basic idea is
guiding the solver to assign the variable that could lead to
a solution to the network verification formula, a data plane
violating invariant.
Guideline 4: For branching variables, we prefer the value
assignment that is consistent with operating intent. Consid-
ering that most routers usually operate correctly despite some
failures, we can prioritize exploring assignments that align
with the operator’s intent, effectively minimizing conflicts.

Considering the example network, for prefix 10.1.0.0/24,
the operator only intends to deny route messages at router S.
Therefore, when deciding values outDA.valid, bestA.valid
and outAS .valid, we can use this knowledge to guide as-
signing their value to true, consequently avoiding conflicts.
Furthermore, let us consider the data center network, which
barely uses route policy to deny route messages due to its
intent to guarantee connectivity. In this case, using Z3 as
the SMT solver may encounter a lot of conflicts because it
always first explores the false assignment. Thus, Z3 will falsely
judge that every router denies all route messages and does not
have a route to the destination. In contrast, conflicts can be
significantly reduced if we explore the true assignment first.
Guideline 5: For branching variables that reside in the
suspicious error routers, we prefer the assignment that
is contrary to operating intent. Since the resulting data
plane we are searching for must violate the operating intent,
we cannot simply guide all variables first to explore the
assignments consistent with intent. Therefore, we need to
adjust the assignments of variables in routers suspected of
errors to be contrary to the operator’s intent. Considering
our example network, the invariant is router S can not reach
10.1.0.0/24. If the operator suspects that the import policy of
router S for router B is incorrectly configured, we can guide
the assignment of the variable inBS to true, contrary to the
intended false assignment. Here, inBS denotes the symbolic
BGP route announcement sent from B to S.

C. Guiding SMT Solving with Variable and Assignment Order

With the variable and assignment exploration order above,
we need to force the SMT solver to obey the exploration
order. We implement it by modifying the unassigned variable
selection and assignment part of the DPLL(T) algorithm.
Concretely, we use two structures to store the exploration
order: a queue q to store all branching variables ordered by
the guideline of variable exploration and a map m that stores
the preferred assigned values for each branching variable
generated based on the guideline of assignment exploration.
In the modified algorithm, when the solver tries to select an
unassigned value, we get the first unassigned variable from the
branching variables queue q and it will be assigned according
to the map m. If all branching variables are assigned, the
default exploration approach is used for unassigned variables.
Correctness of guided SMT solving. Like existing branching
guidelines [28]–[31], our algorithm only affects the order in

which variables are considered, but not the logical reasoning
used to derive the solution. The core DPLL(T) algorithm
still needs to explore the entire search space, either finding
a satisfiable assignment or proving unsatisfiability. Therefore,
changing the decision method only affect the search order and
efficiency but not the algorithm’s correctness.

D. Discussion

Generality of the proposed guidelines. Variable exploration
order guidelines, grounded in path-vector protocol semantics,
can easily extend to other protocols like OSPF and ISIS, as
distance-vector and link-state protocols can be modeled simi-
larly [6], [7]. Assignment exploration order guidelines depend
on network-specific operating intents. Nevertheless, they re-
main general because an overall intent often suffices to reduce
conflicts significantly. For the data center network example
shown in guideline 4, simply prioritizing true assignment is
adequate. Besides, the intent can be automatically generated
by analyzing configurations or based on configuration rules
such as the Gao-Rexford rule [32]. However, a trade-off exists
between efficiency and generality: more precise intent can
prevent more conflicts and accelerate solving, but at the cost
of being more network-specific.
Exploration of potential additional guidelines. Our guide-
lines provide a robust foundation but only encompass a subset
of possible strategies. First, we currently overlook certain
variables like link variables, which could be helpful in sce-
narios like k-link failure verification. Second, leveraging extra
domain knowledge, such as the symmetry structure, could en-
hance the solving process. Furthermore, while our exploration
order is set in advance, integrating it with the solving process
offers a potential improvement through adaptive changes.

IV. SIMPLIFYING SMT FORMULA

This section details how we use network domain knowledge
to enhance the SMT formula encoding. Concretely, we sim-
plify the formula in two ways: (1) pruning the configurations
that are unrelated to the invariant; (2) abstracting the long-
width variables into short-width variables.
A. Pruning Unrelated Configurations

Current SMT-based verification techniques simply encode
whole configurations of all routers into a big SMT formula,
leading to poor scalability for large and complex networks.
However, many configuration statements are not required to
be encoded because of their ineffectiveness in verification.

The basic idea of configuration pruning is to reduce un-
necessary constraints and variables based on the invariant.
Specifically, we implement this approach in three steps. First,
the statements not configured for any address in the property’s
prefix are reduced from the constraint, and we denote these
statements with SR. Second, the communities only introduced
in SR are directly reduced from each symbolic route, denoted
as CR. Last, the statements configured for the community c
that satisfy c ∈ CR are reduced from the constraint.

Considering our example, since the property only concerns
the forwarding behavior of packets destined for 10.1.0.0/24,
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the configuration statements configured for prefixes that not
intersected with the destination do not need to be encoded into
the SMT formula, such as the statements for 10.0.0.0/24. This
pruning can not only simplify the complexity of constraint but
also efficiently reduce the number of variables. Because com-
munity attributes are costly encoded by introducing a Boolean
variable r.c for every symbolic route r and community c
that appears in some router’s configuration. For example, ten
variables can be reduced even if only considering the symbolic
routes of router A (community 910 and 930 are not encoded
in two symbolic import routes, two symbolic export routes,
and one symbolic best route).
B. Abstracting Long-width Variables

Inspired by the use of abstract interpretation to simplify
network simulation [11], we design a variable abstraction
method to simplify the SMT formula without sacrificing the
correctness of verification.

Our basic idea of variable abstraction is to narrow the
assignment range by replacing the concrete value with the
abstract value. Concretely, we focus on the attribute used
to select the best path and express with the integer value,
such as weight, local preference, and med. For non-transitive
attributes such as weight, we do the abstraction for each router
independently, meaning that the abstraction value range only
depends on the number of different values in one router’s con-
figuration. For transitive attributes, we do the abstraction for
routers in the same domain that the attribute can transmit. For
example, the local preference attribute can only be transmitted
between iBGP neighbors. Therefore, we can abstract the local
preference value for each AS separately.

Considering our example network, the local preference can
only be assigned to three different values, which are 50,
200, and 100 (default value). Therefore, we can use the
abstract values 1, 2, and 3 to represent them, which can be
cheaply expressed with a 2-bit unsigned bit vector instead
of the original expensive 16-bit integers. Moreover, the 2-bit
unsigned bit vector can be further abstracted in two ways.
First, since all routers in our network connect with the eBGP
connection, the local preference attribute will not be trans-
mitted between them, meaning that every router only needs
to keep the local preference value in its configuration. For
example, routers A, B, and D only need a 1-bit unsigned bit
vector to represent the default value. Second, the abstraction
can be combined with the reduction method. Since router
A’s statements for communities 910 and 930 can be reduced
based on the invarient, the local preference values can be
reduced consequently, leading that router S can also use a 1-bit
unsigned bit vector to represent the local preference values.
C. Correctness of Formula Simification

The general idea to prove the correctness of our formula
simplification approach is to show that the data plane result
is consistent before and after the abstraction. To prove it, we
use the stable path problem (SPP) [33] to express the network
model and routing semantics of path vector protocols. For a
destination, SPP uses P to represent all permitted paths and
their priority for each node, which determines the possible

Network #Nodes #Lines Network #Nodes #Lines Network #Nodes #Lines

REN 34 4.76×103 CUS 86 1.15×104 CL 323 4.41×104

ARN 35 4.96×103 CLT 154 2.06×104 LDTC 537 7.43×104

BIC 49 6.90×103 USC 174 2.20×104 TCCL 621 8.49×104

ESN 69 9.20×103 COG 198 2.71×104 KDL 1.02×105

LAT 70 9.11×103 CD 267 3.71×104
755

Fig. 6. WAN datasets statistics.
convergences of the protocol. Therefore, the data plane result
is consistent if P remains the same after abstraction.
P depends on the route transfer and selection functions,

while the transfer function determines the elements in P , and
the selection function determines their order. Considering our
configurations pruning approach, because the pruned state-
ments and community tags are ineffective, the semantics of
transfer and selection functions remains unchanged. Second,
abstracting attributes also retain the semantics of these two
functions since the abstract domain captures all possible values
and preserves the priority order. Therefore, the elements and
order of P will not change after the abstraction.

V. PERFORMANCE EVALUATION

We implement a prototype of NetSMT and evaluate its
performance extensively to study the following two questions:
(1) How does NetSMT perform compared to the state-of-the-
art SMT-based CPV tools? (2) What is the effect of the guided
SMT solving and simplified SMT formula, respectively?
A. Implementation

We implement NetSMT in C++ and Java, including guided
SMT solving based on Z3 4.12.2 [18], (named the original
z3) and simplified SMT formula based on Minesweeper [7].
B. Experiment Setting

1) Dataset: We use the synthesized network configurations
to evaluate NetSMT, including wide-area networks (WAN)
and data center networks (DCN). For WAN, we use the
topology with router size from 34 to 755, and synthesize base
configurations [34]–[36] for each topology. These topologies
are obtained either through direct selection or synthesis from
topologies in topology zoo [37]. Fig. 6 summarizes the statis-
tics for the synthesized WAN configurations.

For DCN, we use the fat-tree architecture [38] and follow
the RFC 7938 [39] to generate base BGP configurations for
connection. The fat-tree structure ranges from 4 ports to 20
ports in each switch. Furthermore, we introduce a modest
amount of errors to the base configuration to emulate invariant
violations for both WAN and DCN.

2) Invariants: We evaluate following five invariants.
• Pair-wise reachability/isolation: Specific pairs of nodes

are able/unable to reach each other.
• Pair-wise reachability/isolation with k-link-failure:

Specific pairs of nodes are able/unable to reach each
other, even if any k links fail. We set k=3.

• Forwarding: Generate a stable data plane.
3) Baseline: For WAN, we use Minesweeper with the

original z3 as the baseline. The reason why we do not choose
Kirigami [20] and Lightyear [21] is that Kirigami [20] cannot
verify the k-link-failure, and Lightyear [21] has false positives
in verification results due to model over-approximation.
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Fig. 7. The SMT verification time on the satisfiable benchmarks on WAN.
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(b) number of conflicts on DCN
Fig. 8. Number of conflicts on all benchmarks.

For DCN, we also use BiNode [17] as the baseline in
addition to Minesweeper. BiNode uses a policy-aware model
to speed up the verification time for networks with routing
policies following the Gao-Rexford [32] condition. The reason
why we do not choose BiNode [17] for WAN is that our WAN
configurations do not meet the condition, while the condition
applies to DCN with the fat-tree structure.

4) Setup: We evaluate the performance of NetSMT by
verifying different invariants on topologies of various sizes.
For each topology, we randomly select 100 node pairs or
destination IPs for invariant verification. These queries contain
both satisfiable and unsatisfiable ones. We evaluate these
verification systems on a Linux server with an Intel Xeon
Silver 4210R 2.40GHz CPU and 128GB memory.

We use the 90th quantile of verification time as the main
metric for evaluation. This choice is due to the potential
occurrence of outliers in our experimental results. We also
measure the number of conflicts that indicate the tried times
in the search procedure of SMT solving. We set a timeout
period of 1 hour for each verification process.
C. Performance on WAN

1) Verification Time: We consider Minesweeper using the
original z3, NetSMT without simplification, NetSMT without
guidance, and NetSMT.

Due to the similarity between reachability and isolation,
we calculate the average of their statistics (i.e. the average of
the 90th quantile of verification time on each invariant) and
show them on a single figure. Fig. 7 shows the verification
time on the satisfiable benchmarks of different invariants.
NetSMT effectively reduces verification time for both the
guided SMT solving and simplified SMT formula techniques,
with a more substantial decrease in the guided SMT solving.
NetSMT results in a speedup of up to 215.8× compared to
Minesweeper (shown in Fig. 10(b) with a red line). Guided
SMT solving can be up to 178.7× faster than the original z3 on
SMT formulas whether the formula simplification is applied
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Fig. 9. The SMT verification time on the unsatisfiable benchmarks on WAN.

or not. Meanwhile, simplifying the formulas can accelerate
the verification process by up to 5.45×. Despite NetSMT
performing best in most cases, the non-determinism of the
Z3 Java API will result in fluctuations across runs, leading to
some occasional outliers.

Fig. 9 shows the statistics of the verification time on unsat-
isfiable WAN queries. Results show NetSMT does not achieve
acceleration and, in some cases, even reduces efficiency. This
result is mainly because unsatisfiable formulas require full
space exploration. However, such inertia does not reduce the
utility of NetSMT, because network configurations are often
erroneous, and quickly identifying these errors is vital for
effective network management. Accelerating verification on
unsatisfiable queries remains an open question. A promising
approach is applying network domain knowledge to learn
additional counterexamples, thus narrowing the search space.

2) Effect of Guided SMT Solving: We present the number
of conflicts of all benchmarks in Fig. 8(a). The horizontal axis
represents the number of conflicts generated using the original
z3 solver, while the vertical axis represents the quantities using
the guided SMT solver. Each point on the graph corresponds
to an instance. The proximity of the mark to the lower-right
corner indicates the effectiveness of the guided SMT solver.
Closer proximities indicate better performance, and vice versa.

As we can see, on all satisfiable benchmarks, the number
of conflicts guided by our design is much fewer than that
with the original z3 and is essentially flat on the unsatisfiable
benchmarks. These results indicate that NetSMT uses domain
knowledge to guide the search process for finding a counterex-
ample with fewer try times in the search procedure.

3) Effect of Simplified Formula: To evaluate the effect of
formula simplification, We measure the average number of
SMT variables and formulas before and after model sim-
plification on all benchmarks. Fig. 11 shows that model
simplification can significantly reduce the number of variables
and formulas in topologies of various sizes. It suggests that
there remains considerable redundancy in Minesweeper’s SMT
formulas, making our simplification of the SMT formula a key
factor contributing to verification acceleration.
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Fig. 10. The SMT verification time on the satisfiable benchmarks on DCN.
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D. Performance on DCN
According to RFC 7938 [39], the configurations employed

on fat-tree do not contain redundant policies, making simpli-
fied SMT formulas unsuitable for DCNs, hence unevaluated.

1) Verification Time: We consider Minesweeper using the
original z3, NetSMT without simplification, and BiNode using
the original z3. We also consider BiNode using the modi-
fied z3 in NetSMT (i.e., the guided z3). Fig. 10 shows the
SMT verification time of the satisfiable benchmarks on DCN
topologies of various sizes. The results obtained on fat-tree
networks are similar to those observed on WAN compared to
Minesweeper. Additionally, when applying BiNode to address
this specific network configuration, our guided SMT solving
also contributes to its accelerated processing. Guided SMT
solving demonstrates a substantial improvement with the k-
link-failure invariant, achieving up to 129.5× improvement.
Moreover, BiNode encounters a timeout when the topology
size reaches the fat-tree with 20 ports, while the verification
time of BiNode with guidance remains within 30 seconds.
Other invariants are already efficiently verified using BiNode,
leaving little room for further improvement on verification
time. Fig. 12 shows the verification time of unsatisfiable
benchmarks on DCN, which resembles the results on WAN.

2) Effect of Guided SMT Solving: The significant reduction
in the number of conflicts for satisfiable benchmarks can be
seen in Fig. 8(b), demonstrating that guided SMT solving is
also effective for DCN. The number of conflicts on DCN
is fewer compared to the WAN results in Fig. 8(a). On all
satisfiable benchmarks, the number of conflicts guided by our
design remains limited to no more than 10, contributing to a
notably significant acceleration on DCN.

VI. RELATED WORK

Network control plane verification. CPV [5]–[16] uses for-
mal methods to analyze the correctness of configuration files
to ensure they will operate as intended. SMT-based tools [5],
[7], [17] have advantages over simulation-based [6], [8], [9],
[14], [15] and graph-based [12], [13] tools for their capability
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Fig. 12. The SMT verification time on the unsatisfiable benchmarks on DCN.

to verify diverse routing protocols in all possible converged
states. But they are inefficient in verifying large networks.
Accelerating SMT-based control plane verification. Exist-
ing techniques [10], [17], [20], [21] only work for specific
scenarios and are not effective when dealing with complicated
invariants, such as verifying reachability under k-link-failure.
Kirigami [20] heavily relies on the operator’s experience and
cannot handle k-link-failure invariant and network with multi-
ple convergences; Lightyear [21] may produce false positives
results due to its over-approximation model; BiNode [17]
limits in verifying configurations conforming to the G-R
condition. Instead, NetSMT systematically leverages domain
knowledge to accelerate SMT-based verification in generic
large-scale networks.
Control flow-guided SMT solving. There are previous efforts
on utilizing control flow knowledge to accelerate SMT-based
program verification [28], [29], [31]. Our guideline 1 to
prioritize branching variables is inspired by them. However,
we go beyond substantially to design multiple guidelines to
accelerate SMT-based CPV using network domain knowledge.

VII. CONCLUSION

We design NetSMT, a fast SMT-based CPV tool that
systematically leverages network domain knowledge to guide
the search for a solution to the network verification formula by
avoiding redundant search space and simplifying the verifica-
tion formula to reduce the problem scale. Extensive evaluation
demonstrates the efficacy and efficiency of NetSMT.

The authors have provided public access to their code and
data at [22].
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