
Network Applications:
Operational Analysis; Load Balancing

among Homogeneous Servers

1

Qiao Xiang, Congming Gao

https://sngroup.org.cn/courses/cnns-
xmuf23/index.shtml

10/17/2023

This deck of slides are heavily based on CPSC 433/533 at Yale University, by courtesy of Dr. Y. Richard Yang.

2

Outline

q Admin and recap
q HTTP

o Basic design: HTTP 1.0
o HTTP "acceleration"
o Operational analysis

q Multi-servers
q Application overlays (peer-to-peer

networks)

Admin

q Lab assignment 2 due Oct. 19

3

4

Recap: Latency of Basic HTTP/1.0

q >= 2 RTTs per object:
o TCP handshake --- 1 RTT
o client request and server

responds --- at least 1 RTT
(if object can be contained
in one packet)

TCP SYN

TCP/ACK; HTTP GET

TCP ACK

base page

TCP SYN

TCP/ACK; HTTP GET

TCP ACK

image 1

5

Recap: Substantial Efforts to Speedup HTTP/1.0

q Reduce the number of objects fetched [Browser cache]

q Reduce data volume [Compression of data]
q Header compression [HTTP/2]

q Reduce the latency to the server to fetch the content [Proxy cache]
q Remove the extra RTTs to fetch an object [Persistent HTTP, aka

HTTP/1.1]

q Increase concurrency [Multiple TCP connections]
q Asynchronous fetch (multiple streams) using a single TCP [HTTP/2]

q Server push [HTTP/2]

6

Recap: HTTP/1.0, Keep-Alive, Pipelining

Source: http://chimera.labs.oreilly.com/books/1230000000545/ch11.html

Is this the best
we can do?

7

HTTP/2 Basic Idea:
Remove Head-of-Line Blocking in HTTP/1.1

Source: http://chimera.labs.oreilly.com/books/1230000000545/ch11.html

Demo: https://http2.akamai.com/demo

Data flows from sequential to
parallel: two requests must be
concurrent.

Observing HTTP/2
q export SSLKEYLOGFILE=/tmp/keylog.txt
q Start Chrome, e.g.,

o Mac: /Applications/Google
Chrome.app/Contents/MacOS/Google Chrome

o Ubuntu: firefox
q Visit HTTP/2 pages, such as

https://www.tmall.com
q Wireshark:

o Mac: Wireshark -> preferences -> protocol -> TSL
(pre)-master-secret log file name

o Ubuntu: edit -> perferences -> protocol -> SSL
(pre)-master-secret log file name8

https://www.tmall.com/

9

HTTP/2 Design: Multi-Streams

https://tools.ietf.org/html/rfc7540

HTTP/2 Binary Framing

https://hpbn.co/http2/

10

HTTP/2 Header Compression

11

HTTP/2 Stream Dependency and Weights

12

HTTP/2 Server Push

13

Outline

q Admin and recap
q HTTP

o HTTP "acceleration"
o Operational analysis

Goal: Best Server Design Limited Only
by Resource Bottleneck

CPU

DISK Before

NET

CPU

DISK

NET
After

14

Some Questions

q When is CPU the bottleneck for
scalability?
o So that we need to add helper threads

q How do we know that we are reaching the
limit of scalability of a single machine?

q These questions drive network server
architecture design

q Some basic performance analysis
techniques are good to have 15

16

Background: Little’s Law (1961)

q For any system with no
or (low) loss.

q Assume
o mean arrival rate l, mean time R

at system, and mean number Q of requests at
system

q Then relationship between Q, l, and R:

R, Q

RQ l=
Example: XMU admits 3000 students each year, and mean time a
student stays is 4 years, how many students are enrolled?

l

Little’s Law: Proof

17

time

arrival

1

2

3

A

t

t
A=l A

AreaR = t
AreaQ =

RQ l=

Operational Analysis

q Relationships that do not require any
assumptions about the distribution of service
times or inter-arrival times
o Hence focus on measurements

q Identified originally by Buzen (1976) and
later extended by Denning and Buzen (1978).

q We touch only some techniques/results
o In particular, bottleneck analysis

q More details see linked reading
18

Under the Hood (An example FSM)

CPU

File I/O
I/O request

start (arrival rate λ)
exit

(throughput λ until some
center saturates)

Memory cache

network

19

Operational Analysis: Resource
Demand of a Request

20

CPU

Disk

Network

VCPU visits for SCPU units of resource time per visit

VNet visits for SNet units of resource time per visit

VDisk visits for SDisk units of resource time per visit

Memory

VMem visits for SMem units of resource time per visit

Operational Quantities

q T: observation interval Ai: # arrivals to device i
q Bi: busy time of device i Ci: # completions at device i
q i = 0 denotes system

21

=il rate arrival T
Ai

=iX Throughput T
Ci

=i UnUtilizatio T
Bi

=iS timeservice Mean
i

i
C
B

Utilization Law

q The law is independent of any assumption on arrival/service
process

q Example: Suppose NIC processes 125 pkts/sec, and each pkt
takes 2 ms. What is utilization of the network NIC?

22

=i UnUtilizatio T
Bi

i

ii
C
B

T
C=

iiSX=

Deriving Relationship Between
R, U, and S for one Device
q Assume flow balanced (arrival=throughput), Little’s Law:

q Assume PASTA (Poisson arrival--memory-less arrival--sees
time average), a new request sees Q ahead of it, and FIFO

q According to utilization law, U = XS

23

XRRQ == l

XRSSQSSR +=+=

URSR += U
SR -= 1

Forced Flow Law

q Assume each request visits device i Vi
times

24

=iX Throughput T
Ci

T
C

C
Ci 0

0
=

XVi=

Bottleneck Device

q Define Di = Vi Si as the total demand of a request
on device i

q The device with the highest Di has the highest
utilization, and thus is called the bottleneck

25

=i UnUtilizatio iiSX

ii XSV=

iiSXV=

Bottleneck vs System Throughput

26

1 UnUtilizatio £= iii SXV

max

1
DX £®

Example 1

q A request may need
o 10 ms CPU execution time
o 1 Mbytes network bw
o 1 Mbytes file access where

• 50% hit in memory cache

q Suppose network bw is 100 Mbps, disk I/O
rate is 1 ms per 8 Kbytes (assuming the
program reads 8 KB each time)

q Where is the bottleneck?

27

Example 1 (cont.)

q CPU:
o DCPU=

q Network:
o DNet =

q Disk I/O:
o Ddisk =

28

10 ms (e.q. 100 requests/s)

1 Mbytes / 100 Mbps = 80 ms (e.q., 12.5
requests/s)

0.5 * 1 ms * 1M/8K = 62.5 ms
(e.q. = 16 requests/s)

Example 2

q A request may need
o 150 ms CPU execution time (e.g., dynamic content)
o 1 Mbytes network bw
o 1 Mbytes file access where

• 50% hit in memory cache

q Suppose network bw is 100 Mbps, disk I/O rate is 1
ms per 8 Kbytes (assuming the program reads 8 KB
each time)

q Bottleneck: CPU -> use multiple threads to use more
CPUs, if available, to avoid CPU as bottleneck

29

