Network Applications:
Operational Analysis; Load Balancing
among Homogeneous Servers

Qiao Xiang, Congming Gao

https://sngroup.org.cn/courses/cnns-
xmuf23/index.shiml

10/17/2023

This deck of slides are heavily based on CPSC 433/533 at Yale University, by courtesy of Dr. Y. Richard Yang.

Qutline

a Admin and recap

QHTTP
o Basic design: HTTP 1.0
o HTTP "acceleration”
o Operational analysis

2 Multi-servers

a Application overlays (peer-to-peer
networks)

Admin

A Lab assignment 2 due Oct. 19

Recap: Latency of Basic HTTP/1.0

Q>= 2 RTTs per object:
o TCP handshake --- 1 RTT

o client request and server
responds --- at least 1 RTT
(if object can be contained
in one packet)

Recap: Substantial Efforts to Speedup HTTP/1.0

O Reduce the number of objects fetched [Browser cache]

U

Reduce data volume [Compression of data]
Header compression [HTTP/2]

U

U

Reduce the latency to the server to fetch the content [Proxy cache]

Remove the extra RTTs to fetch an object [Persistent HTTP, aka
HTTP/1.1]

U

U

Increase concurrency [Multiple TCP connections]
Asynchronous fetch (multiple streams) using a single TCP [HTTP/2]

U

& K

QO Server push [HTTP/2] & & &
I N I D

Recap: HTTP/1.0, Keep-Alive, Pipelining

TCP connection #1, Request #1-2: HTML + (SS

TCP connection #1, Request #1: HTML request

Client Server
A
N
SYN \’ 0ms 3
28ms { SYN ACK ' o
(=)}
ACK 4// soms 3
GET /html \k
84ms =
=
=
server processing: 40 ms l '
K
124ms /]' HTML response ' 2
| close connection = 152 ms
v v
TCP connection #2, Request #2: (SS request
Client Server
SYN \ 0ms =
28ms { SYN ACK ' g:
| ACK 4/——/ 3
GET /css \k o
84ms §
server processing: 20 ms i 'f’
104ms //_ { (SS response ' g
| close connection ; 132ms
v

Client

3

SYN

\»

Server

oms

L

P———

28ms
ACK
GET /html
84ms
124ms

GET /css

\k

server processing: 40 ms l

56ms

|

swo9g

P—

;

180ms

200ms

\>

server processing: 20 ms

152ms

HTML response

Swz/l -dlH

P—

close connection

|

Client

v v

Server

{ (SS response .

228ms

SYN
28ms
ACK
GET /html
GET /css -

124 ms

server processing: 40 + 20 ms

close connection

U

v

l

----- HTML response
----- (SS response

172ms

———

swog -diL

SWoLL- d1LH

Y Source: http://chimera.labs.oreilly.com/books/1230000000545/ch11.html 6

HTTP/2 Basic Idea:
Remove Head-of-Line Blocking in HTTP/1.1

(Client Server

SYN

~
28NS berrererrmmmrrnmmnrii s .« g
Ak s 3

GET /html ——)
GET /css 8AMS Frorreerrmmmnmmnnriarna s T:‘ _
: =
server processing: 40 ms . >g
(@

(SS response
l dose Connection ' ‘.-..i .. 152 ms }

v v
Demo: https://http2.akamai.com/demo
Source: http.//chimera.labs.oreilly.com/books/1230000000545/chll.html

Observing HTTP/2

A export SSLKEYLOGFILE=/tmp/keylog.txt

A Start Chrome, e.g.,

o Mac: /Applications/Google
Chrome.app/Contents/MacOS/Google Chrome

o Ubuntu: firefox

A Visit HTTP/2 pages, such as
https://www.tmall.com

A Wireshark:
o Mac: Wireshark -> preferences -> protocol -> TSL
(pre)-master-secret log file name
o Ubuntu: edit -> perferences -> protocol -> SSL
(pre)-master-secret log file name

https://www.tmall.com/

HTTP/2 Design: Multi-Streams

HTTP/2 connection

- | stream1 | stream3 | stream3 | stream 1
DATA HEADERS DATA DATA
N S —— stream 5 | ..
DATA
Client
Bit +0..7 +8..15 +16..23 +24..31
o Length Type
32 Flags
40 | R Stream Identifier
Frame Payload

HTTP/2 Binary Framing

https://hpbn.co/http2/ https://tools.ietf.org/html/rfc7540

HTTP/2 Header Compression

Encoded headers

2

7

63

19

Huffman(“/resource”)

Request headers
:method GET
:scheme https
:host | example.com
‘path /resource
user-agent | Mozilla/5.0 ...
custom-hdr | some-value

62

Static table

1 -authority

2 :method GET
51 referer

62 | user-agent | Mozilla/5.0 ...
63 ‘host [example.com

Huffman(“custom-hdr”)

Huffman(“some-value”)

Dynamic table

10

HTTP/2 Stream Dependency and Weights

%*
*
%*

implicit root : *

p

)
stream [A B D
weight 12 4 1

©0O=eE— -=0<J
© Q=€ -0 <---
—

11

HTTP/2 Server Push

HTTP/2 connection

| stream4 stteam1 | stream4 | stream2 |
DATA | HEADERS | PUSH_PROMISE | PUSH_PROMISE
Y — U
DATA

stream 1
HEADERS

stream 1: /page.html (client request)

stream 2: /script.js (push promise)
stream 4: /style.css (push promise)

12

Qutline

a Admin and recap
AQHTTP

o HTTP "acceleration”
o Operational analysis

13

Goal: Best Server Design Limited Only
by Resource Bottleneck

DISK mammmmms e A DS - S Before
NET = = = .

CPU - - : |
DISK s S s— After
NET O 0 n O

Some Questions

d When is CPU the bottleneck for
scalability?
o So that we need to add helper threads

a How do we know that we are reaching the
limit of scalability of a single machine?

A These questions drive network server
architecture design

0 Some basic performance analysis
techniques are good to have

15

Background: Little's Law (1961)

A For any system with no
or (low) loss. \ R, Q
d Assume

o mean arrival rate A, mean time R
at system, and mean nhumber Q of requests at
system

a Then relationship between Q, A, and R:
O = AR

Example: XMU admits 3000 students each year, and mean time a
student stays is 4 years, how many students are enrolled?

16

Little’ s Law: Proof

arrival

A

O = AR

t
time
— 4 _ Areat _ Area
A t R = A -t

Operational Analysis

a Relationships that do not require any
assumptions about the distribution of service
times or inter-arrival times

o Hence focus onh measurements

A Identified originally by Buzen (1976) and
later extended by Denning and Buzen (1978).

a We touch only some techniques/results
o In particular, bottleneck analysis

3 More details see linked reading

18

Under the Hood (An example FSM)

N

start (arrival rate A)

network

exit
(throughput X until some
center saturates)

C

CPU

File I/O

I/O request

_Q

A

O

Memory cache

19

Operational Analysis: Resource

Demand of a Request

CPU
Q Vpy Visits for Sgpy units of resource time per visit

Network

Q Vet Visits for Syt units of resource time per visit
Disk

Q Vpisk Visits for Sy units of resource time per visit
Memory

Q Vem Visits for Sy, UNits of resource time per visit
20

Operational Quantities

Q T: observation interval Ai. # arrivals to device i
QO Bi: busy time of device i Ci: # completions at device i
QO i =0 denotes system
Ai
arrival rate A
T
Cz
Throughput X, =—-
Bz
Utilization U, = —

Mean service time S, = =

21

Utilization Law

B.
Utilization U, = —

T

. C B
T C

— XS,

O The law is independent of any assumption on arrival/service
process

O Example: Suppose NIC processes 125 pkts/sec, and each pkt
takes 2 ms. What is utilization of the network NIC?

~,

22

Deriving Relationship Between
R, U,and S for one Device

O Assume flow balanced (arrival=throughput), Little's Law:

O Assume PASTA (Poisson arrival--memory-less arrival--sees
time average), a hew request sees Q ahead of it, and FIFO

R=§+05=5+XRS

O According to utilization law, U = XS

1-U

23

Forced Flow Law

0 Assume each request visits device i Vi
times

C

Throughput X, =—

_ G G

l

—C, T

:ViX

24

Bottleneck Device

Utilization U, = XS’
=V, X5,
= XV.5,

ad Define Di = Vi Si as the total demand of a request
on device i

d The device with the highest Di has the highest
utilization, and thus is called the bottleneck

25

Bottleneck vs System Throughput

Utilization U, = XV.§,; <1

26

Example 1

ad A request may need
o 10 ms CPU execution time
o 1 Mbytes network bw

o 1 Mbytes file access where
* 50% hit in memory cache

a Suppose network bw is 100 Mbps, disk I/0
rate is 1 ms per 8 Kbytes (assuming the
program reads 8 KB each time)

0 Where is the bottleneck?

27

Example 1 (cont.)

a CPU:

o Depu= 10 ms (e.q. 100 requests/s)

2 Network:

o Dpnet = 1 Mbytes / 100 Mbps = 80 ms (e.q., 12.5
requests/s)

Q Disk I/0:

o Ddisk = 0.5* 1 ms* 1M/8K = 62.5 ms
(e.q. = 16 requests/s)

28

Example 2

0 A request may need
o 150 ms CPU execution time (e.g., dynamic content)
o 1 Mbytes network bw

o 1 Mbytes file access where
* 50% hit in memory cache

0 Suppose network bw is 100 Mbps, disk I/0O rate is 1
ms per 8 Kbytes (assuming the program reads 8 KB
each time)

0 Bottleneck: CPU -> use multiple threads to use more
CPUs, if available, to avoid CPU as bottleneck

29

