
Network Applications:
High-performance Server Design

This deck of slides are heavily based on CPSC 433/533 at Yale University, by courtesy of Dr. Y. Richard Yang.

Qiao Xiang, Congming Gao

https://sngroup.org.cn/courses/cnns-
xmuf23/index.shtml

10/24/2023

2

Outline

q Admin and recap
q High-performance network server design

o Overview
o Threaded servers

• Per-request thread
– problem: large # of threads and their creations/deletions

may let overhead grow out of control
• Thread pool

– Design 1: Service threads compete on the welcome socket
– Design 2: Service threads and the main thread coordinate

on the shared queue
» polling (busy wait)
» suspension: wait/notify

Admin

q Exam 1 date?

3

4

Recap: Latency of Basic HTTP/1.0

q >= 2 RTTs per object:
o TCP handshake --- 1 RTT
o client request and server

responds --- at least 1 RTT
(if object can be contained
in one packet)

TCP SYN

TCP/ACK; HTTP GET

TCP ACK

base page

TCP SYN

TCP/ACK; HTTP GET

TCP ACK

image 1

5

Recap: Substantial Efforts to Speedup HTTP/1.0

q Reduce the number of objects fetched [Browser cache]

q Reduce data volume [Compression of data]
q Header compression [HTTP/2]

q Reduce the latency to the server to fetch the content [Proxy cache]
q Remove the extra RTTs to fetch an object [Persistent HTTP, aka

HTTP/1.1]

q Increase concurrency [Multiple TCP connections]
q Asynchronous fetch (multiple streams) using a single TCP [HTTP/2]

q Server push [HTTP/2]

Recap: Direction Mechanisms

6

Cluster2
in Europe

Cluster1
in US East

Cluster2
in US West

proxy

Load
balancer

Load
balancer

servers

DNS name1

IP1 IP2 IPn

DNS name2

App

Outline
q Recap
q Single, high-performance network server
q Multiple network servers

o Basic issues
o Load direction

• DNS (IP level)
• Load balancer/smart switch (sub-IP level)

7

Smart Switch: Big Picture

smart
switch

8

Load Balancer (LB): Basic Structure

LBClient

Server1

Server2

Server3

Problem of the basic structure?

VIP

RIP1

RIP2

RIP3

D=VIPS=client

D=VIP

S=cli
en

t

10

Problem

q Client to server packet has VIP as destination
address, but real servers use RIPs
o if LB just forwards the packet from client to a real

server, the real server drops the packet
o reply from real server to client has real server IP as

source -> client will drop the packet

state: listening
address: {RealIP.6789, *:*}

completed connection queue: C1; C2
sendbuf:
recvbuf:

state:
address: {VIP:6789, 198.69.10.10.1500}

sendbuf:
recvbuf:

state:
address: {RealIP:6789, 198.69.10.10.1500}

sendbuf:
recvbuf:

…

…

D=VIPS=client

client server

11

Solution 1: Network Address
Translation (NAT)
q LB does

rewriting/
translation

q Thus, the LB
is similar to a
typical NAT
gateway with
an additional
scheduling
function

12

Load Balancer

Example Virtual Server via NAT

13

LB/NAT Flow

14

LB/NAT Flow

15

LB/NAT Advantages and
Disadvantages
q Advantages:

o Only one public IP address is needed for the
load balancer; real servers can use private IP
addresses

o Real servers need no change and are not aware
of load balancing

q Problem
o The load balancer must be on the critical path

and hence may become the bottleneck due to
load to rewrite request and response packets

• Typically, rewriting responses has more load because
there are more response packets

16

Goal: LB w/ Direct Reply

load
balancer

Connected
by a single

switch

17

LB with Direct Reply: Implication

18

LBClient

Server1

Server2

Server3

Direct reply

VIP

VIP

Each real server uses VIP
as its IP address
Address conflict: multiple
devices w/ the same IP addr

Why IP Address Matters?

q Each network interface card listens to an assigned MAC address
q A router is configured with the range of IP addresses connected

to each interface (NIC)
q To send to a device with a given IP, the router needs to

translate IP to MAC (device) address
q The translation is done by the Address Resolution Protocol

(ARP)
19

VIP

20

ARP Protocol

q ARP is “plug-and-play”:
o nodes create their ARP tables without

intervention from net administrator

q A broadcast protocol:
o Router broadcasts query frame, containing

queried IP address
• all machines on LAN receive ARP query

o Node with queried IP receives ARP frame, replies
its MAC address

ARP in Action

21

VIP

- Router broadcasts ARP broadcast query: who has VIP?

- ARP reply from LB: I have VIP; my MAC is MACLB

- Data packet from R to LB: destination MAC = MACLB

Router R

D=VIPS=client

LB/DR Problem

22

VIP VIP VIPVIP

ARP and race condition:
• When router R gets a packet with dest. address VIP, it broadcasts
an Address Resolution Protocol (ARP) request: who has VIP?
• One of the real servers may reply before load balancer

Solution: configure real servers to not respond to ARP request

Router R

LB via Direct Routing
q The virtual IP address is shared by real servers

and the load balancer.
q Each real server has a non-ARPing, loopback alias

interface configured with the virtual IP address,
and the load balancer has an interface configured
with the virtual IP address to accept incoming
packets.

q The workflow of LB/DR is similar to that of
LB/NAT:
o the load balancer directly routes a packet to the selected

server
• the load balancer simply changes the MAC address of the data frame to that

of the server and retransmits it on the LAN (how to know the real server’s
MAC?)

o When the server receives the forwarded packet, the server
determines that the packet is for the address on its loopback
alias interface, processes the request, and finally returns the
result directly to the user

23

LB/DR Advantages and
Disadvantages
q Advantages:

o Real servers send response packets to clients
directly, avoiding LB as bottleneck

q Disadvantages:
o Servers must have non-arp alias interface
o The load balancer and server must have one of

their interfaces in the same LAN segment
o Considered by some as a hack, not a clean

architecture

24

Example Implementation of LB

q An example open source implementation is
Linux virtual server (linux-vs.org)

• Used by
– www.linux.com
– sourceforge.net
– wikipedia.org

• More details on ARP problem:
http://www.austintek.com/LVS/LVS-
HOWTO/HOWTO/LVS-HOWTO.arp_problem.html

o Many commercial LB servers from F5, Cisco, …
q More details please read chapter 2 of Load

Balancing Servers, Firewalls, and Caches

25

../readings/Load%20Balancing%20Servers,%20Firewalls,%20and%20Caches.pdf

Problem of the
Load Balancer Architecture

26

LBClient

Server1

Server2

Server3

One major problem is that the LB
becomes a single point of failure (SPOF).

VIPD=VIPS=client

Solutions

q Redundant load balancers
o E.g., two load balancers (a good question to

think offline)
q Fully distributed load balancing

o e.g., Microsoft Network Load Balancing (NLB)

27

Microsoft NLB

q No dedicated load balancer
q All servers in the cluster receive all packets
q Key issue: one and only one server processes each

packet
q All servers within the cluster simultaneously run a

mapping algorithm to determine which server should
handle the packet. Those servers not required to service
the packet simply discard it.
q Mapping (ranking) algorithm: computing the “winning”

server according to host priorities, multicast or
unicast mode, port rules, affinity, load percentage
distribution, client IP address, client port number,
other internal load information

28
http://technet.microsoft.com/en-us/library/cc739506%28WS.10%29.aspx

Discussion

q Compare the design of using Load Balancer
vs Microsoft NLB

29

Recap: Direction Mechanisms

30

Cluster2
in Europe

Cluster1
in US East

Cluster2
in US West

proxy

Load
balancer

Load
balancer

servers

DNS name1

IP1 IP2 IPn

DNS name2

App

- Rewrite
- Direct reply
- Fault tolerance

Outline

q Admin and recap
q Single, high-performance network server
q Multiple servers

o Overview
o Basic mechanisms
o Example: YouTube (offline read)

31

You Tube

q 02/2005: Founded by Chad Hurley, Steve
Chen and Jawed Karim, who were all early
employees of PayPal.

q 10/2005: First round of funding ($11.5 M)
q 03/2006: 30 M video views/day
q 07/2006: 100 M video views/day
q 11/2006: acquired by Google
q 10/2009: Chad Hurley announced in a blog

that YouTube serving well over 1 B video
views/day (avg = 11,574 video views /sec)

32

http://video.google.com/videoplay?docid=-6304964351441328559#

Pre-Google Team Size

q 2 Sysadmins
q 2 Scalability software architects
q 2 feature developers
q 2 network engineers
q 1 DBA
q 0 chefs

33

WebServer Implementation

TCP socket space

state: listening
address: {*.6789, *.*}
completed connection queue:
sendbuf:
recvbuf:

128.36.232.5
128.36.230.2

state: listening
address: {*.25, *.*}
completed connection queue:
sendbuf:
recvbuf:

state: established
address: {128.36.232.5:6789, 198.69.10.10.1500}
sendbuf:
recvbuf:

connSocket = accept()

create
ServerSocket(6789)

write file to connSocket

close connSocket Discussion: what does each step do and
how long does it take?

read request from
connSocket

read local file

45

Demo

q Try TCPServer
q Start two TCPClient

o Client 1 starts early but stops
o Client 2 starts later but inputs first

46

Server Processing Steps

Accept Client
Connection

Read
Request

Find
File

Send
Response Header

Read File
Send Data

may block
waiting on

disk I/O

may block
waiting on
network

47

Writing High Performance
Servers: Major Issues

q Many socket and IO operations can
cause a process to block, e.g.,
o accept: waiting for new connection;
o read a socket waiting for data or close;
o write a socket waiting for buffer space;
o I/O read/write for disk to finish

48

Goal: Limited Only by Resource Bottleneck

CPU

DISK Before

NET

CPU

DISK

NET
After

49

50

Outline

q Admin and recap
q Network server design

o Overview
Ø Multi-thread network servers

Multi-Threaded Servers

q Motivation:
o Avoid blocking the whole program

(so that we can reach bottleneck
throughput)

q Idea: introduce threads
o A thread is a sequence of

instructions which may execute
in parallel with other threads

o When a blocking operation
happens, only the flow (thread)
performing the operation is
blocked

51

Background: Java Thread Model

q Every Java application has at least one thread
o The “main” thread, started by the JVM to run the

application’s main() method
o Most JVMs use POSIX threads to implement Java

threads

q main() can create other threads
o Explicitly, using the Thread class
o Implicitly, by calling libraries that create threads as a

consequence (RMI, AWT/Swing, Applets, etc.)

52

Thread vs Process

53

Creating Java Thread
q Two ways to implement Java thread

1. Extend the Thread class
• Overwrite the run() method of the Thread class

2. Create a class C implementing the Runnable
interface, and create an object of type C,
then use a Thread object to wrap up C

q A thread starts execution after its
start() method is called, which will start
executing the thread’s (or the Runnable
object’s) run() method

q A thread terminates when the run()
method returns

55http://java.sun.com/javase/6/docs/api/java/lang/Thread.html

Option 1: Extending Java Thread

56

class PrimeThread extends Thread {
long minPrime;

PrimeThread(long minPrime) {
this.minPrime = minPrime;

}

public void run() {
// compute primes larger than minPrime . . .

}
}

PrimeThread p = new PrimeThread(143);
p.start();

Option 1: Extending Java Thread

57

class RequestHandler extends Thread {
RequestHandler(Socket connSocket) {
// …

}
public void run() {
// process request

}
…

}

Thread t = new RequestHandler(connSocket);
t.start();

Option 2: Implement the
Runnable Interface

58

class PrimeRun implements Runnable {
long minPrime;
PrimeRun(long minPrime) {

this.minPrime = minPrime;
}

public void run() {
// compute primes larger than minPrime . . .

}
}

PrimeRun p = new PrimeRun(143);

new Thread(p).start();

Example: a Multi-threaded TCPServer

59

q Turn TCPServer into a multithreaded
server by creating a thread for each
accepted request

Per-Request Thread Server

60

main() {
ServerSocket s = new ServerSocket(port);
while (true) {

Socket conSocket = s.accept();
RequestHandler rh

= new RequestHandler(conSocket);
Thread t = new Thread (rh);
t.start();

}

Try the per-request-thread TCP server: TCPServerMT.java

main thread

thread starts

thread starts

thread
endsthread

ends

class RequestHandler implements Runnable {
RequestHandler(Socket connSocket) { … }
public void run() {

//
} }

Summary: Implementing Threads

61

class RequestHandler
extends Thread {

RequestHandler(Socket connSocket)
{

…
}
public void run() {

// process request
}
…

}

Thread t = new RequestHandler(connSocket);
t.start();

class RequestHandler
implements Runnable {

RequestHandler(Socket connSocket)
{

…
}
public void run() {

// process request
}

…
}

RequestHandler rh = new
RequestHandler(connSocket);

Thread t = new Thread(rh);
t.start();

Modeling Per-Request Thread
Server: Theory

62

0 1 k N
p0 p1 pk

k+1
pk+1 pN

Welcome
Socket
Queue

l

(k+1)µ

Problem of Per-Request Thread: Reality

q High thread creation/deletion overhead

q Too many threads ® resource overuse ®
throughput meltdown ® response time explosion
o Q: given avg response time and connection arrival rate,

how many threads active on avg? 63

64

Recall: Little’s Law (1961)

q For any system with no
or (low) loss.

q Assume
o mean arrival rate l, mean time R

at system, and mean number Q of requests at
system

q Then relationship between Q, l, and R:

R, Q

RQ l=
Example: XMU admits 3000 students each year, and mean time a

student stays is 4 years, how many students are enrolled?

l

Discussion: How to Address the Issue

65

66

Outline

q Admin and recap
q High-performance network server design

o Overview
o Threaded servers

• Per-request thread
– problem: large # of threads and their creations/deletions

may let overhead grow out of control
ØThread pool

Using a Fixed Set of Threads
(Thread Pool)
q Design issue: how to distribute the

requests from the welcome socket to the
thread workers

67

welcome
socket

Thread 1 Thread 2 Thread K

Design 1: Threads Share
Access to the welcomeSocket

68

WorkerThread {
void run {

while (true) {
Socket myConnSock = welcomeSocket.accept();
// process myConnSock
myConnSock.close();

} // end of while
}

welcome
socket

Thread 1 Thread 2 Thread K

sketch; not
working code

Design 2: Producer/Consumer

69

welcome
socket

Main
thread

Thread 2 Thread KThread 1

Q: Dispatch
queue

main {
void run {

while (true) {
Socket con = welcomeSocket.accept();
Q.add(con);

} // end of while
}

WorkerThread {
void run {

while (true) {
Socket myConnSock = Q.remove();
// process myConnSock
myConnSock.close();

} // end of while
}

sketch; not
working code

Common Issues Facing Designs 1 and 2

q Both designs involve multiple threads
modifying the same data concurrently
o Design 1:
o Design 2:

q In our original TCPServerMT, do we have
multiple threads modifying the same data
concurrently?

70

welcomeSocket

Q

