
Network Applications:
High-performance Server Design

This deck of slides are heavily based on CPSC 433/533 at Yale University, by courtesy of Dr. Y. Richard Yang.

Qiao Xiang, Congming Gao

https://sngroup.org.cn/courses/cnns-
xmuf23/index.shtml

10/26/2023

2

Outline

q Admin and recap
q High-performance network server design

o Overview
o Threaded servers

• Per-request thread
– problem: large # of threads and their creations/deletions

may let overhead grow out of control
• Thread pool

– Design 1: Service threads compete on the welcome socket
– Design 2: Service threads and the main thread coordinate

on the shared queue
» polling (busy wait)
» suspension: wait/notify

Admin

q Exam 1 date: 2:30-4:10pm, Nov. 9
q Assignment 3: to be posted today

3

Recap: Direction Mechanisms

4

Cluster2
in Europe

Cluster1
in US East

Cluster2
in US West

proxy

Load
balancer

Load
balancer

servers

DNS name1

IP1 IP2 IPn

DNS name2

App

- Rewrite
- Direct reply
- Fault tolerance

Recap: Server Processing Steps

Accept Client
Connection

Read
Request

Find
File

Send
Response Header

Read File
Send Data

may block
waiting on

disk I/O

may block
waiting on
network

5

Recap: Multi-Threaded Servers

q Motivation:
o Avoid blocking the whole program

(so that we can reach bottleneck
throughput)

q Idea: introduce threads
o A thread is a sequence of

instructions which may execute
in parallel with other threads

o When a blocking operation
happens, only the flow (thread)
performing the operation is
blocked

6

Background: Java Thread Model

q Every Java application has at least one thread
o The “main” thread, started by the JVM to run the

application’s main() method
o Most JVMs use POSIX threads to implement Java

threads

q main() can create other threads
o Explicitly, using the Thread class
o Implicitly, by calling libraries that create threads as a

consequence (RMI, AWT/Swing, Applets, etc.)

7

Recap: Per-Request Thread Server

8

main() {
ServerSocket s = new ServerSocket(port);
while (true) {

Socket conSocket = s.accept();
RequestHandler rh

= new RequestHandler(conSocket);
Thread t = new Thread (rh);
t.start();

}

Try the per-request-thread TCP server: TCPServerMT.java

main thread

thread starts

thread starts

thread
endsthread

ends

class RequestHandler implements Runnable {
RequestHandler(Socket connSocket) { … }
public void run() {

//
} }

Recap: Implementing Threads

9

class RequestHandler
extends Thread {

RequestHandler(Socket connSocket)
{

…
}
public void run() {

// process request
}
…

}

Thread t = new RequestHandler(connSocket);
t.start();

class RequestHandler
implements Runnable {

RequestHandler(Socket connSocket)
{

…
}
public void run() {

// process request
}

…
}

RequestHandler rh = new
RequestHandler(connSocket);

Thread t = new Thread(rh);
t.start();

Problem of Per-Request Thread: Reality

q High thread creation/deletion overhead

q Too many threads ® resource overuse ®
throughput meltdown ® response time explosion
o Q: given avg response time and connection arrival rate,

how many threads active on avg? 10

11

Outline

q Admin and recap
q High-performance network server design

o Overview
o Threaded servers

• Per-request thread
– problem: large # of threads and their creations/deletions

may let overhead grow out of control
ØThread pool

Using a Fixed Set of Threads
(Thread Pool)
q Design issue: how to distribute the

requests from the welcome socket to the
thread workers

12

welcome
socket

Thread 1 Thread 2 Thread K

Design 1: Threads Share
Access to the welcomeSocket

13

WorkerThread {
void run {

while (true) {
Socket myConnSock = welcomeSocket.accept();
// process myConnSock
myConnSock.close();

} // end of while
}

welcome
socket

Thread 1 Thread 2 Thread K

sketch; not
working code

Design 2: Producer/Consumer

14

welcome
socket

Main
thread

Thread 2 Thread KThread 1

Q: Dispatch
queue

main {
void run {

while (true) {
Socket con = welcomeSocket.accept();
Q.add(con);

} // end of while
}

WorkerThread {
void run {

while (true) {
Socket myConnSock = Q.remove();
// process myConnSock
myConnSock.close();

} // end of while
}

sketch; not
working code

Common Issues Facing Designs 1 and 2

q Both designs involve multiple threads
modifying the same data concurrently
o Design 1:
o Design 2:

q In our original TCPServerMT, do we have
multiple threads modifying the same data
concurrently?

15

welcomeSocket

Q

Concurrency and Shared Data
q Concurrency is easy if threads don’t

interact
o Each thread does its own thing, ignoring other

threads
o Typically, however, threads need to

communicate/coordinate with each other
o Communication/coordination among threads is

often done by shared data

16

Simple Example
public class ShareExample extends Thread {

private static int cnt = 0; // shared state, count
// total increases

public void run() {
int y = cnt;
cnt = y + 1;

}

public static void main(String args[]) {
Thread t1 = new ShareExample();
Thread t2 = new ShareExample();
t1.start();
t2.start();
Thread.sleep(1000);
System.out.println(“cnt = “ + cnt);

}
} 17Q: What is the result of the program?

Simple Example

What if we add a println:
int y = cnt;
System.out.println(“Calculating…”);
cnt = y + 1;

18

What Happened?

q A thread was preempted in the middle of
an operation

q The operations from reading to writing cnt
should be atomic with no interference
access to cnt from other threads

q But the scheduler interleaves threads and
caused a race condition

q Such bugs can be extremely hard to
reproduce, and also hard to debug

19

Synchronization

q Refers to mechanisms allowing a
programmer to control the execution order
of some operations across different
threads in a concurrent program.

q We use Java as an example to see
synchronization mechanisms

q We'll look at locks first.

20

Java Lock (1.5)

r Only one thread can hold a lock at once
r Other threads that try to acquire it block (or become

suspended) until the lock becomes available
r Reentrant lock can be reacquired by same thread

m As many times as desired
m No other thread may acquire a lock until it has been released the

same number of times that it has been acquired
m Do not worry about the reentrant perspective, consider it a lock

21

interface Lock {
void lock();
void unlock();
... /* Some more stuff, also */

}
class ReentrantLock implements Lock { ... }

Java Lock

q Fixing the ShareExample.java problem

22

import java.util.concurrent.locks.*;
public class ShareExample extends Thread {

private static int cnt = 0;
static Lock lock = new ReentrantLock();

public void run() {
lock.lock();
int y = cnt;
cnt = y + 1;
lock.unlock();

}
…

}

Java Lock

q It is recommended to use the following
pattern

23

…
lock.lock();
try {

// processing body
} finally {

lock.unlock();

}

Java synchronized

r This pattern is really common
m Acquire lock, do something, release lock after we are

done, under any circumstances, even if exception was
raised, the method returned in the middle, etc.

r Java has a language construct for this
m synchronized (obj) { body }

r Utilize the design that every Java object has its own implicitly lock
object, also called the intrinsic lock, monitor lock or simply monitor
• Obtains the lock associated with obj
• Executes body
• Release lock when scope is exited
• Even in cases of exception or method return

24

Discussion

q An object and its associated lock are different !
q Holding the lock on an object does not affect what

you can do with that object in any way
q Examples:

o synchronized(o) { ... } // acquires lock named o
o o.f (); // someone else can call o’s methods
o o.x = 3; // someone else can read and write o’s fields

25

object o o’s lock

Synchronization on this

r A program can often use this as the
object to lock

r Does the program above have a data race?
m No, both threads acquire locks on the same

object before they access shared data 26

class C {
int cnt;
void inc() {

synchronized (this) {
cnt++;

} // end of sync
} // end of inc

}

C c = new C();

Thread 1
c.inc();

Thread 2
c.inc();

Synchronization on this

r Does the program above have a data race?
m No, both threads acquire locks on the same object before they

access shared data 27

class C {
static int cnt;
void inc() {

synchronized (this) {
cnt++;

} // end of sync
} // end of inc

void dec() {
synchronized (this) {

cnt--;
} // end of sync

} // end of dec
}

C c = new C();

Thread 1
c.inc();

Thread 2
c.dec();

Example

q See
o ShareWelcome/Server.java
o ShareWelcome/ServiceThread.java

28

Discussion

q You would not need the lock for accept if Java
were to label the call as thread safe
(synchronized)

q One reason Java does not specify accept as
thread safe is that one could register your own
socket implementation with
ServerSocket.setSocketFactory

q Always consider thread safety in your design
o If a resource is shared through concurrent read/write,

write/write), consider thread-safe issues.

29

http://java.sun.com/j2se/1.4.2/docs/api/java/net/ServerSocket.html

Why not Synchronization

qSynchronized method invocations
generally are going to be slower than
non-synchronized method invocations

qSynchronization gives rise to the
possibility of deadlock, a severe
performance problem in which your
program appears to hang

30

Synchronization Overhead

q Try SyncOverhead.java

31

Synchronization Overhead

q Try SyncOverhead.java

32

Method Time (ms; 5,000,000 exec)

no sync 8 ms

synchronized method 18 ms

synchronized on this 18 ms

lock 89 ms

lock and finally 88 ms

Design 2: Producer/Consumer

33

welcome
socket

Main
thread

Thread 2 Thread KThread 1

Q: Dispatch
queue

main {
void run {

while (true) {
Socket con = welcomeSocket.accept();
Q.add(con);

} // end of while
}

WorkerThread {
void run {

while (true) {
Socket myConnSock = Q.remove();
// process myConnSock
myConnSock.close();

} // end of while
}

How to turn it into
working code?

Main

34

main {
void run {

while (true) {
Socket con = welcomeSocket.accept();
synchronized(Q) {

Q.add(con);
}

} // end of while
}

main {
void run {

while (true) {
Socket con = welcomeSocket.accept();
Q.add(con);

} // end of while
}

Worker

35

while (true) {
// get next request
Socket myConn = null;
while (myConn==null) {

synchronize(Q) {
if (!Q.isEmpty())

myConn = (Socket) Q.remove();
}

} // end of while
// process myConn

}

WorkerThread {
void run {

while (true) {
Socket myConnSock = Q.remove();
// process myConnSock
myConnSock.close();

} // end of while
}

Example

q try
o ShareQ/Server.java
o ShareQ/ServiceThread.java

36

Problem of ShareQ Design

q Worker thread continually spins (busy wait) until a
condition holds

q Can lead to high utilization and slow response time

q Q: Does the shared welcomeSock have busy-wait?

37

while (true) { // spin
lock;
if (Q.condition) // {

// do something
} else {

// do nothing
}
unlock

} //end while

Solution: Suspension

q Put thread to sleep to avoid busy spin
q Thread life cycle: while a thread executes,

it goes through a number of different
phases
o New: created but not yet started
o Runnable: is running, or can run on a free CPU
o Blocked: waiting for socket/I/O, a lock, or

suspend (wait)
o Sleeping: paused for a user-specified interval
o Terminated: completed

38

Solution: Suspension

39

while (true) {
// get next request
Socket myConn = null;
while (myConn==null) {

lock Q;
if (Q.isEmpty()) // {

// stop and wait
} else {

// get myConn from Q
}
unlock Q;

}
// get the next request; process

}

Hold lock?

Solution: Suspension

40

while (true) {
// get next request
Socket myConn = null;
while (myConn==null) {

lock Q;
if (Q.isEmpty()) // {

// stop and wait
} else {

// get myConn from Q
}
unlock Q;

}
// get the next request; process

}

Design pattern:
- Need to release lock to

avoid deadlock (to allow
main thread write into Q)
- Typically need to reacquire
lock after waking up

Wait-sets and Notification

q Every Java Object has an associated wait-
set (called wait list) in addition to a lock
object

41

object o o’s lock

o’s wait list

Wait-sets and Notification

q Wait list object can be manipulated only while
the object lock is held

• Otherwise, IllegalMonitorStateException is thrown

42

object o o’s lock

o’s wait list

Wait-sets

q Thread enters the wait-set by invoking
wait()
o wait() releases the lock

• No other held locks are released
o then the thread is suspended

q Can add optional time wait(long
millis)
o wait() is equivalent to wait(0) – wait

forever
o for robust programs, it is typically a good idea

to add a timer 43

Worker

44

while (true) {
// get next request
Socket myConn = null;
synchronized(Q) {

while (Q.isEmpty()) {
Q.wait();

}
myConn = Q.remove();

} // end of sync
// process request in myConn

} // end of while

while (true) {
// get next request
Socket myConn = null;
while (myConn==null) {
lock Q;
if (! Q.isEmpty()) // {
myConn = Q.remove();

}
unlock Q;

} // end of while
// get the next request; process

}

Note the while
loop; no guarantee
that Q is not empty
when wake up

Wait-set and Notification (cont)

q Threads are released from the wait-set when:
o notifyAll() is invoked on the object

• All threads released (typically recommended)
o notify() is invoked on the object

• One thread selected at ‘random’ for release
o The specified time-out elapses
o The thread has its interrupt() method invoked

• InterruptedException thrown
o A spurious wakeup occurs

• Not (yet!) spec’ed but an inherited property of underlying
synchronization mechanisms e.g., POSIX condition variables

45

Notification

q Caller of notify() must hold lock
associated with the object

q Those threads awoken must reacquire lock
before continuing
o (This is part of the function; you don’t need to

do it explicitly)
o Can’t be acquired until notifying thread

releases it
o A released thread contends with all other

threads for the lock

46

Main Thread

47

main {
void run {

while (true) {
Socket con = welcomeSocket.accept();
synchronize(Q) {

Q.add(con);
Q.notifyAll();

}
} // end of while

}

main {
void run {

while (true) {
Socket con = welcomeSocket.accept();
synchronized(Q) {

Q.add(con);
}

} // end of while
}

welcome
socket

Main
thread

Thread KThread 1

Q: Dispatch
queue

Suspend

Worker

48

welcome
socket

Main
thread

Thread KThread 1

Q: Dispatch
queue

while (true) {
// get next request
Socket myConn = null;
while (myConn==null) {
synchronize(Q) {

if (! Q.isEmpty()) // {
myConn = Q.remove();

}
}

} // end of while
// process myConn

}

Busy wait

while (true) {
// get next request
Socket myConn = null;
while (myConn==null) {
synchronize(Q) {

if (! Q.isEmpty()) // {
myConn = Q.remove();

} else {
Q.wait();

}
}

} // end of while
// process myConn

}

Worker: Another Format

49

while (true) {
// get next request
Socket myConn = null;
synchronized(Q) {

while (Q.isEmpty()) {
Q.wait();

}
myConn = Q.remove();

} // end of sync
// process request in myConn

} // end of while

Note the while
loop; no guarantee
that Q is not empty
when wake up

Example

q See
o WaitNotify/Server.java
o WaitNotify/ServiceThread.java

50

Summary: Guardian via
Suspension: Waiting

51

synchronized (obj) {
while (!condition) {

try { obj.wait(); }
catch (InterruptedException ex)
{ ... }

} // end while
// make use of condition

} // end of sync

r Golden rule: Always test a condition in a loop
m Change of state may not be what you need
m Condition may have changed again

r Break the rule only after you are sure that it is
safe to do so

Summary: Guarding via
Suspension: Changing a Condition

52

synchronized (obj) {
condition = true;
obj.notifyAll(); // or obj.notify()

}

r Typically use notifyAll()
r There are subtle issues using notify(), in particular

when there is interrupt

Note
q Use of wait(), notifyAll() and notify() similar to

o Condition queues of classic Monitors
o Condition variables of POSIX PThreads API
o In C# it is called Monitor (http://msdn.microsoft.com/en-

us/library/ms173179.aspx)

q Python Thread module in its Standard Library is based
on Java Thread model
(https://docs.python.org/3/library/threading.html)
o “The design of this module is loosely based on Java’s threading model.

However, where Java makes locks and condition variables basic
behavior of every object, they are separate objects in Python.”

53

http://msdn.microsoft.com/en-us/library/ms173179.aspx)

Java (1.5)

q Condition created from a Lock
q await called with lock held

o Releases the lock
• But not any other locks held by this thread

o Adds this thread to wait set for lock
o Blocks the thread

q signallAll called with lock held
o Resumes all threads on lock’s wait set
o Those threads must reacquire lock before continuing

• (This is part of the function; you don’t need to do it explicitly) 54

interface Lock { Condition newCondition(); ... }
interface Condition {

void await();
void signalAll(); ...

}

Producer/Consumer Example

55

Lock lock = new ReentrantLock();
Condition ready = lock.newCondition();
boolean valueReady = false;
Object value;

void produce(Object o) {
lock.lock();
while (valueReady)

ready.await();
value = o;
valueReady = true;
ready.signalAll();
lock.unlock();

}

Object consume() {
lock.lock();
while (!valueReady)

ready.await();
Object o = value;
valueReady = false;
ready.signalAll();
lock.unlock();

}

Blocking Queues in Java

q Design Pattern for producer/consumer
pattern with blocking, e.g.,
o put/take

q Two handy implementations
o LinkedBlockingQueue (FIFO, may be bounded)
o ArrayBlockingQueue (FIFO, bounded)
o (plus a couple more)

56

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent
/BlockingQueue.html

Beyond Class: Complete Java
Concurrency Framework
Executors
— Executor
— ExecutorService
— ScheduledExecutorService
— Callable
— Future
— ScheduledFuture
— Delayed
— CompletionService
— ThreadPoolExecutor
— ScheduledThreadPoolExecutor
— AbstractExecutorService
— Executors
— FutureTask
— ExecutorCompletionService
Queues
— BlockingQueue
— ConcurrentLinkedQueue
— LinkedBlockingQueue
— ArrayBlockingQueue
— SynchronousQueue
— PriorityBlockingQueue
— DelayQueue

57

Concurrent Collections
— ConcurrentMap
— ConcurrentHashMap
— CopyOnWriteArray{List,Set}
Synchronizers
— CountDownLatch
— Semaphore
— Exchanger
— CyclicBarrier
Locks: java.util.concurrent.locks
— Lock
— Condition
— ReadWriteLock
— AbstractQueuedSynchronizer
— LockSupport
— ReentrantLock
— ReentrantReadWriteLock
Atomics: java.util.concurrent.atomic
— Atomic[Type]
— Atomic[Type]Array
— Atomic[Type]FieldUpdater
— Atomic{Markable,Stampable}Reference

See jcf slides for a tutorial.

Correctness

q Threaded
programs are
typically more
complex.

q What types
of properties
do you
analyze to
verify server
correctness?

58

// master
void run() {

while (true) {
Socket con = welcomeSocket.accept();
synchronize(Q) {

Q.add(con);
Q.notifyAll();

} // end of sync
} // end of while

} // end of run()

// worker
void run() {

while (true) {
// get next request
Socket myConn = null;
synchronized(Q) {
while (Q.isEmpty()) {

Q.wait();
} // end of while
myConn = Q.remove();

} // end of sync
// process request in myConn

} // end of while
} // end of run()

Key Correctness Properties

q Safety

q Liveness (progress)

q Fairness
o For example, in some settings, a designer may

want the threads to share load equally

59

Safety Properties

q What safety properties?

o No read/write; write/write conflicts
• holding lock Q before reading or modifying shared

data Q and Q.wait_list

o Q.remove() is not on an empty queue

q There are formal techniques to model
server programs and analyze their
properties, but we will use basic analysis
o This is enough in many cases

60

Make Program Explicit

61

// dispatcher
void run() {

while (true) {
Socket con = welcomeSocket.accept();
synchronize(Q) {

Q.add(con);
Q.notifyAll();

} // end of sync
} // end of while

} // end of run()

// dispatcher
void run() {

1. while (true) {
2. Socket con = welcomeSocket.accept();
3. lock(Q) {
4. Q.add(con);
5. notify Q.wait_list; // Q.notifyAll();
6. unlock(Q);

} // end of while
} // end of run()

62

// service thread
void run() {

while (true) {
// get next request
Socket myConn = null;
synchronized(Q) {

while (Q.isEmpty()) {
Q.wait();

} // end of while
myConn = Q.remove();

} // end of sync
// process request in myConn

} // end of while
}

// service thread
void run() {
1. while (true) {

// get next request
2. Socket myConn = null;
3. lock(Q);
4. while (Q.isEmpty()) {
5. unlock(Q)
6. add to Q.wait_list;
7. yield until marked to wake; //wait
8. lock(Q);
9. } // end of while
10. myConn = Q.remove();
11. unlock(Q);

// process request in myConn
} // end of while

}

Statements to States (Dispatcher)

63

d3:
lock

// dispatcher
void run() {
1. while (true) {
2. Socket con = welcomeSocket.accept();
3. lock(Q) {
4. Q.add(con);
5. notify Q.wait_list; // Q.notifyAll();
6. unlock(Q);

} // end of while
} // end of run()

d4:
Q.add

d5:
Qwl.notify

d6:
unlock

Statements to States (Service)

64

while (true) {
// get next request

1. Socket myConn = null;
2. lock(Q);
3. while (Q.isEmpty()) {
4. unlock(Q)
5. add to Q.wait_list;
6. yield; //wait
7. lock(Q);
8. } // end of while isEmpty
9. myConn = Q.remove();
10. unlock(Q);

// process request in myConn
} // end of while

s2:
lock

s3:
Q.isEmpty

s4:
unlock

s5:
add Qwl

s6:
yield

s7:
lock

s9:
Q.remove

s10:
unlock

true

fa
ls

e

s1:

Check Safety

65

d3:
lock

d4:
Q.add

d5:
Qwl.notify

d6:
unlock

conflict

s2:
lock

s3:
Q.isEmpty

s4:
unlock

s5:
add Qwl

s6:
yield

s7:
lock

s9:
Q.remove

s10:
unlock

true

fa
ls

e

s1:

Real Implementation of wait

66

while (true) {
// get next request

1. Socket myConn = null;
2. lock(Q);
3. while (Q.isEmpty()) {
4. add to Q.wait_list;
5. unlock(Q); after add to wait list
6. yield; //wait
7. lock(Q);
8. }
9. myConn = Q.remove();
10. unlock(Q);

// process request in myConn
} // end of while

Check Safety

67

d3:
lock

d4:
Q.add

d5:
Qwl.notify

d6:
unlock

s2:
lock

s3:
Q.isEmpty

s4’:
add Qw1

s5’:
unlock

s6:
yield

s7:
lock

s9:
Q.remove

s10:
unlock

true

fa
ls

e

s1:

Liveness Properties

q What liveness (progress) properties?

o dispatcher thread can always add to Q

o every connection in Q will be processed

68

Dispatcher Thread Can Always Add to Q
q Assume dispatcher thread is blocked
q Suppose Q is not empty, then each iteration removes one

element from Q
q In finite number of iterations, all elements in Q are removed

and all service threads unlock and block
o Need to assume each service takes finite amount of time (bound by a

fixed T0)

69

s2:
lock

s3:
Q.isEmpty

s4’:
add Qw1

s5’:
unlock

s6:
yield

s7:
lock

s9:
Q.remove

s10:
unlock

true

fa
ls

e

s1:

Each Connection in Q is Processed

q Cannot be guaranteed unless
o there is fairness in the thread scheduler, or
o put a limit on Q size to block the dispatcher

thread

70

Summary: Program Correctness Analysis

q Safety
o No read/write; write/write conflicts

• holding lock Q before reading or modifying shared
data Q and Q.wait_list

o Q.remove() is not on an empty queue
q Liveness (progress)

o dispatcher thread can always add to Q
o every connection in Q will be processed

q Fairness
o For example, in some settings, a designer may

want the threads to share load equally

71

Use Java ThreadPoolExecutor
72

server = new ServerSocket(port);
System.out.println("Time server listens at port: " + port);

// Create Java Executor Pool
TimeServerHandlerExecutePool myExecutor

= new TimeServerHandlerExecutePool(50, 10000);

Socket socket = null;
while (true) {

socket = server.accept();
myExecutor.execute(new TimeServerHandler(socket));

} // end of while

Use Java ThreadPoolExecutor
73

public class TimeServerHandlerExecutePool {

private ExecutorService executor;

public TimeServerHandlerExecutePool(int maxPoolSize, int queueSize) {
executor = new ThreadPoolExecutor(

Runtime.getRuntime().availableProcessors(),
maxPoolSize,
120L, TimeUnit.SECONDS,
new ArrayBlockingQueue<java.lang.Runnable>(queueSize)

);
}

public void execute(java.lang.Runnable task) {
executor.execute(task);

}
}

For Java ThreadPoolExecutor scheduling algorithm, see:
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ThreadPoolExecutor.html

Summary: Thread-Based
Network Server
q Multiple threads (execution sequences) offer multiple

execution sequences => blocking causes only one thread
being blocked

q Intuitive (sequential) programming model
q Shared address space simplifies optimizations

74

Accept
Conn

Read
Request

Find
File

Send
Header

Read File
Send Data

Accept
Conn

Read
Request

Find
File

Send
Header

Read File
Send Data

Thread 1

Thread N

…

q Thread creation overhead
q Thread synchronization overhead

o Need to handle synchronization -> otherwise race condition
o Handle synchronization -> Overhead, complexity (e.g., wait/notify, deadlock)
o Thread size (how many threads) difficult to tune

q Still cannot handle well the large-number of long, idle
connections problem (why?)

Summary: Thread-Based
Network Server

75

Accept
Conn

Read
Request

Find
File

Send
Header

Read File
Send Data

Accept
Conn

Read
Request

Find
File

Send
Header

Read File
Send Data

Thread 1

Thread N

…

Should You Use Threads?

q Typically avoid threads for io
o Use event-driven, not threads, for GUIs,

servers, distributed systems.

q Use threads where true CPU
concurrency is needed.
o Where threads needed, isolate usage

in threaded application kernel: keep
most of code single-threaded. Threaded Kernel

Event-Driven Handlers

[Ousterhout 1995] 76

