
Application Overlays (P2P);
Network Transport Layer:

Overview; UDP; Stop-and-Wait ARQ
Qiao Xiang, Congming Gao

https://sngroup.org.cn/courses/cnns-
xmuf23/index.shtml

10/31/2023

This deck of slides are heavily based on CPSC 433/533 at Yale University, by courtesy of Dr. Y. Richard Yang.

Outline

q Admin and recap
q Application overlays
q Overview of transport layer
q UDP
q Reliable data transfer, the stop-and-go

protocols

2

Admin

q Lab assignment 3 due on Nov. 19
q Midterm exam on Nov. 9 (during lab class)

o cover from introduction to application layer
o 15-16 subjective questions over 100 minutes
o 1-page cheat sheet allowed

33

Recap: Direction Mechanisms

Cluster2
in Europe

Cluster1
in US East

Cluster2
in US West

proxy

Load
balancer

Load
balancer

servers

DNS name1

IP1 IP2 IPn

DNS name2

App

- cname
- hierarchy

Smart switch/LB
- NAT rewrite
- Direct reply
- NLB

Proxy as a
mechanism for
replica content
consistency

4

Scalability of Server-Only Approaches

5

edge.
servers

C0

client 1

client 2

client 3

client n

DNS

origin

An Upper Bound on Scalability

q Idea: use
resources from
both clients and
the server

q Assume
o need to achieve

same rate to all
clients

o only uplinks can
be bottlenecks

q What is an upper
bound on
scalability?

6

server

C0

client 1

client 2

client 3

client n

C1

C2
C3

Cn

The Scalability Problem

¨Maximum
throughput
R = min{C0,
(C0+SCi)/n}

¨ The bound is
theoretically
approachable

7

server

C0

client 1

client 2

client 3

client n

C1

C2
C3

Cn

Theoretical Capacity:
upload is bottleneck

q Assume c0 > (C0+SCi)/n

q Tree i:
server à client i: ci/(n-1)
client i à other n-1 clients

q Tree 0:
server has remaining
cm= c0 – (c1 + c2 + … cn)/(n-1)
send to client i: cm/n

8

C0

C1

C2 Ci

Cn

c0

ci

c1 c2

cn

ci /(n-1)

cm /n

R = min{C0, (C0+SCi)/n}

Why not Building the Trees?

9

servers

C0

client 1

client 2

client 3

client n

C1

C2
C3

Cn

q Clients come and go
(churns): maintaining the
trees is too expensive
q Each client needs N
connections

Server+Host (P2P) Content
Distribution: Key Design Issues
r Robustness

m Resistant to churns and
failures

r Efficiency
m A client has content that

others need; otherwise, its
upload capacity may not be
utilized

r Incentive: clients are willing
to upload
m Some real systems nearly

50% of all responses are
returned by the top 1% of
sharing hosts

10

servers

C0

client 1

client 2

client 3

client n

C1

C2
C3

Cn

Discussion: How to handle the
issues?
q Robustness

q Efficiency

q Incentive

11

servers/
seeds

C0

client 1

client 2

client 3

client n

C1

C2
C3

Cn

Example: BitTorrent

q A P2P file sharing protocol
q Created by Bram Cohen in 2004

o Spec at bep_0003:
http://www.bittorrent.org/beps/bep_0003.html

12

13

BitTorrent: Lookup

webserver
user

HTTP GET MYFILE.torrent

http://mytracker.com:6969/
S3F5YHG6FEB
FG5467HGF367
F456JI9N5FF4E
…

MYFILE.torrent

Metadata (.torrent) File Structure

q Meta info contains information necessary to
contact the tracker and describes the files
in the torrent
o URL of tracker
o file name
o file length
o piece length (typically 256KB)
o SHA-1 hashes of pieces for verification
o also creation date, comment, creator, …

14

Tracker Protocol
q Communicates with clients via HTTP/HTTPS

q Client GET request
o info_hash: uniquely identifies the file
o peer_id: chosen by and uniquely identifies the client
o client IP and port
o numwant: how many peers to return (defaults to 50)
o stats: e.g., bytes uploaded, downloaded

q Tracker GET response
o interval: how often to contact the tracker
o list of peers, containing peer id, IP and port
o stats

15

16

Tracker Protocol

tracker

webserver
user

“register”

ID1 169.237.234.1:6881
ID2 190.50.34.6:5692
ID3 34.275.89.143:4545
…
ID50 231.456.31.95:6882

list of peers

Peer 50 Peer 2 Peer 1

…

17

Robustness and efficiency:
Piece-based Swarming

Block: 16KB

File
Block: unit of download

r Divide a large file into small blocks and request
block-size content from different peers (why?)

r If do not finish downloading a block from one peer
within timeout (say due to churns), switch to
requesting the block from another peer

18

Detail: Peer Protocol
(Over TCP)

q Peers exchange bitmap representing content
availability
o bitfield msg during initial connection
o have msg to notify updates to bitmap
o to reduce bitmap size, aggregate multiple blocks as a piece

Local PeerRemote Peer

BitField/have BitField/have

10 0 1

Piece
256KB

Incomplete Piece

Peer Request
q If peer A has a piece that

peer B needs, peer B
sends interested to A

q unchoke: indicate that
A allows B to request

q request: B requests
a specific block from A

q piece: specific data
19

1.interested/
3. request

2. unchoke/
4. piece

http://www.bittorrent.org/beps/
bep_0003.html

Key Design Points

q request:
o which data blocks

to request?

q unchoke:
o which peers to

serve?

1.interested/
3. request

2. unchoke/
4. piece

20

Request: Block Availability

q Request (local) rarest first
o achieves the fastest replication of rare pieces
o obtain something of value

21

Block Availability: Revisions

q When downloading starts (first 4 pieces):
choose at random and request them from
the peers
o get pieces as quickly as possible
o obtain something to offer to others

q Endgame mode
o defense against the “last-block problem”: cannot

finish because missing a few last pieces
o send requests for missing pieces to all

peers in our peer list
o send cancel messages upon receipt of a piece

22

BitTorrent: Unchoke

q Periodically (typically
every 10 seconds) calculate
data-receiving rates from
all peers
q Upload to (unchoke) the
fastest

- constant number (4) of
unchoking slots
- partition upload bw
equally among unchoked

commonly referred to as “tit-for-tat” strategy

1.interested/
3. request

2. unchoke/
4. piece

23

Optimistic Unchoking

q Periodically select a peer at random
and upload to it
o typically every 3 unchoking rounds (30 seconds)

q Multi-purpose mechanism
o allow bootstrapping of new clients
o continuously look for the fastest peers

(exploitation vs exploration)

24

BitTorrent Fluid Analysis

q Normalize file size to 1
q x(t): number of downloaders (also known as leechers)

who do not have all pieces at time t.
q y(t): number of seeds in the system at time t.
q l: the arrival rate of new requests.
q µ: the uploading bandwidth of a given peer.
q c: the downloading bandwidth of a given peer, assume

c ≥ µ.
q q: the rate at which downloaders abort download.
q g: the rate at which seeds leave the system.
q h: indicates the effectiveness of downloader sharing,

η takes values in [0, 1].
25

System Evolution

Solving steady state:

Define

26
"Modeling and Performance Analysis of BitTorrent-Like Peer-to-Peer Networks", SIGCOMM'04
https://conferences.sigcomm.org/sigcomm/2004/papers/p444-qiu1.pdf

System State

27

Q: How long does each downloader stay as a downloader?

l

Key take-
away: not
scaling inverse
with system
size (x)
• New requests

comes, new
bandwidth also
comes

Recap

q Applications
q Client-server applications

- Single server
- Multiple servers load balancing

q Application overlays (distributed network
applications) to
- scale bandwidth/resource (BitTorrent)
- distribute content lookup (Freenet, DHT, Chord)

[optional]
- distribute content verification (Block chain) [optional]
- achieve anonymity (Tor)

[optional]

28

