Network Transport Layer:
Overview; UDP; Stop-and-Wait ARQ

Qiao Xiang, Congming Gao

https://sngroup.org.cn/courses/cnns-
xmuf23/index.shtml

11/2/2023

This deck of slides are heavily based on CPSC 433/533 at Yale University, by courtesy of Dr. Y. Richard Yang.

Qutline

a Admin and recap
A Overview of transport layer
a UDP

A Reliable data transfer, the stop-and-go
protocols

Recap: Direction Mechanisms

App
DNS namel DNS name?2
- chame
N - hierarchy
IP1 IP2 IPn

Clusterl Cluster2 Cluster2

in US East in US West in Europe Smart switch/LB
- NAT rewrite
- Direct reply
- NLB
Proxy as a

---------------- mechanism for
replica content
consistency

Recap: Scalability of Server-Only
Approaches

origin

edge.
servers

client 2 O client n

client 3

The Scalability Problem

Max i mum server
throughput

R = min{C,,
(Co+2C;)/n}

Co

A

client 2

The bound is
theoretically
approachable

client n

client 3

Server+Host (P2P) Content
Distribution: Key Design Issues

3 Robustness servers
o Resistant to churns and
failures
J Efficiency Co
o A client has content that

others need; otherwise, its

upload capacity may hot be
utilized client 1 \
3 Incentive: clients are willing
to upload Q

O Some real systems nearly client 2 client n

50% of all responses are
returned by the top 1% of clien’r
sharing hosts

BitTorrent: Lookup

/\
\/——

'EI - HTTP GET MYFILE.torrent

ey
—_—

= l = MYFILE.torrent —>

) \‘\\\\
webserver http://mytracker.com:6969Y/ % é /
S3F5YHG6FEB

FG5467HGF367
FA456JI9NSFF4E

Tracker Protocol

—_———
— 1

—
<
—_—
—_—
—_—
—
—
—_—

—
)

—

—/

list of peers

IDI 169.237.234.1:688

ID2 190.50.34.6:56

ID3 3477 on 11 Wa545 | W |
4 o N .

ID5023

. A
YT BA+ D)
System State _ \
i 5
y(1+ 5)

Q: How long does each downloader stay as a downloader?

Key take-
away: hot
1 scaling inverse
T = with system
0+ 3 |sizex)

New requests
l | } comes, hew

) bandwidth also
comes

Recap

a Applications

a Client-server applications
- Single server
- Multiple servers load balancing

a Application overlays (distributed network
applications) to
- scale bandwidth/resource (BitTorrent)
- distribute content lookup (Freenet, DHT, Chord)
[optional]
- distribute content verification (Block chain) [optional]

- achieve anonymity (Tor)
[optional]

10

Qutline

a Admin and recap
> Overview of transport layer
a UDP

AQ Reliable data transfer, the stop-and-go
protocols

11

Overview

Q Provide /ogical communication [slication
between app’ processes fransport
data fink network |
. physica e
Q Transport protocols run in : physical
end systems /
o send side: breaks app data fink

network
data link

physical

physical

messages into segments,
passes to network layer

o rcv side: reassembles
segments info messages,
passes to app layer

N transport

O Transport vs. network layer nefwor

@M) data link

g g physical

services.

o Network layer: data transfer
between end systems

o Transport layer: data
transter between processes

* relies on, enhances network
layer services

Transport Layer Services and Protocols

a Reliable, in-order delivery (TCP)

o multiplexing

o reliability and connection setup
o congestion control

o flow control

ad Unreliable, unordered delivery: UDP
o multiplexing

Qd Services hot available:
o delay guarantees
o bandwidth guarantees

13

Transport Layer: Road Ahead

Q Class 1 (today):

o transport layer services

o connectionless transport: UDP

o reliable data transfer using stop-and-wait/alternating-bit protocol
Q Class 2 (ready for lab assignment 4/part 1):

o sliding window reliability

o TCP reliability

- overview of TCP
- TCP RTT measurement
 TCP connection management

A Class 3 (ready for lab assignment 4/part 2 [optional]):
o principles of congestion control
o TCP congestion control; ATMD; TCP Reno

Q Class 4:

o TCP Vegas, performance modeling; Nash Bargaining solution
Q Class 5:

o primal-dual as a resource allocation and analysis framework
Q ..

14

Qutline

a Admin and recap
a Overview of transport layer
> UDP and error checking

AQ Reliable data transfer, the stop-and-go
protocols

15

UDP: User Datagram Protocol [RFC 768]

Q0Often used for

streamin
mul’ri meaia Length, in_|source port # dest port #
- hecksum
ClppS bytes of length chec
o loss tolerant UDP
o rate sensitive segment,
including U
header pplication
DOTher' UDP data
uses (message)
o DNS

o SNMP UDP segment format

16

UDP Checksum

Goal: end-to-end detection of “errors” (e.g., flipped
bits) in transmitted segment

Sender:

Q freat segment contents as
sequence of 16-bit integers

Receiver:
0 compute sum of segment and
checksum; check if sum zero
o NO - error detected
o YES - no error detected.

But maybe errors
nonetheless?

O checksum: addition of
segment contents to be
zero

O sender puts checksum
value into UDP checksum
field

17

One s Complement Arithmetic

d UDP checksum is based on one’ s complement
arithmetic

o one’s complement was a common representation of
signed numbers in early computers

ad One’ s complement representation

o bit-wise NOT for negative numbers

o example: assume 8 bits
+ 00000000: 0
+ 00000001: 1
¢ 01111111: 127
+ 10000000: ?
¢ 11111111: ?

o addition: conventional binary addition except adding any

resulting carry back into the resulting sum
- Example: -1+ 2

18

UDP Checksum: Algorithm

0 Example checksum:

111 0011001100110
110101010101 01O01

wraparound (1 01 1 1 01110111011

sum

1 011101110111 100
checksum 0100010001 0O0OO0O0OT11

- For fast implementation of computing UDP
checksum, see http://www.faqgs.org/rfcs/rfc1071.html

19

UDP Checksum: Coverage

Calculated over:

d A pseudo-header

o IP Source Address
(4 bytes)

o IP Destination Address
(4 bytes)

o Protocol (2 bytes)

o UDP Length (2 bytes)

QO UDP header

O UDP data

15 16

32-bit source IP address

32-bit Gestinabion IP address

zer0 8-bit protocal (17) 16-bit UDP length
16-bit source part number 16-bit destination port number
16bit UDP length 16-bit UDP chedgu
data
ped byte (0)

> preudd

20

General Error Detection (Checksum)

| datagram I | datagram I

bits in D'
_>
OK detected
error

<+d diata bits— '
D ED D’ ED °

— () bit-error prone link () —

D = Data protected by error checking, may include header fields
ED = Error Detection bits (redundancy)

* Error detection not 100% reliablel!
* a good error detector may miss some errors, but rarely
* larger ED field generally yields better detection

21

Cyclic Redundancy Check: Background

a Widely used in practice, e.g.,
o Ethernet, DOCSIS (Cable Modem), FDDI,
PKZIP, WinZip, PNG
A For a given data D, consider it as a
polynomial D(x)
o consider the string of O and 1 as the

coefficients of a polynomial
+ e.g. consider string 10011 as x%+x+1

o addition and subtraction are modular 2, thus
the same as xor
A Choose generator polynomial G(x) with r+1
bits, where r is called the degree of 6(x)

22

Cyclic Redundancy Check: Encode

3 Given data G(x) and D(x), choose R(x) with
r bits, such that
o D(x)x"+R(x) is exactly divisible by 6(x)

< d bits » <« r bits —

bit
| D:data bits to be sent‘ R:CRC bitsl pattern

mathematical
formula

D*x" + R

A The bits correspond to D(x)x"+R(x) are
sent to the receiver

Cyclic Redundancy Check: Decode

Encode:

CRC(6)

T = D(x)x"+R(x)

T’

A Since G6(x) is global, when the receiver

. () bit-error prone link ()

check

receives the transmission T (x), it divides
T (x) by 6(x)

o if non-zero remainder: error detected!
o if zero remainder, assumes nho error

24

CRC: Steps and an Example

101011
,100@;01_110,000

Suppose the degree of 6(x) G <«—— 10071 »D
Isr 101
Append r zero to D(x), i.e. 000
consider D(x)xr 1010
.. 1001
Divide D(x)xr by 6(x). Let =10
R(x) denote the 000
reminder T100
Send <D, R> to the receiver 1001
10160
1001
O1l1

25

The Power of CRC

a Let T(x) denote D(x)x™+R(x), and E(x) the polynomial of the

error bits

o the received signal is T' (x) = T(x)+E(x)

Encode:

T = D(x)x™+R(x)

T;

CRC(G)

d Since T(x) is divisible by 6(x), we only need to consider if E(x)

is divisible by 6(x)

> () bit-error prone link ()

check

26

The Power of CRC

A Detect a single-bit error: E(x) = x'
0 in(G)(x) contains two or more terms, E(x) is not divisible by
X

1 Detect an odd number of errors: E(x) has an

odd number of terms:

o lemma: if E(x) has an odd number of terms, E(x) cannot be
divisible by (x+1)
» suppose E(x) = (x+1)F(x), let x=1, the left hand will be 1, while the right
hand will be O

o thus if 6(x) contains x+1 as a factor, E(x) will not be divided
by 6(x)

O Many more errors can be detected by designing the
right 6(x)

27

Example G(x)

d 16 bits CRC:
o CRC-16: xl6+x15+x2+1,
CRC-CCITT: xl6+x12+x5+1
o both can catch
- all single or double bit errors
- all odd number of bit errors

- all burst errors of length 16
or less

« 399.99% of the 17 or 18 bits
burst errors

Registerinitalised at stan of block
/ and contains checksum at end.

TTTRE @

15 12 " 3 9 0

Isb msb
10001010 01100111 10101011 0000000 000000

-

Message 16 flush bits
[replacad by
CRC)

CRC-16 hardware implementation
Using shift and XOR registers

http://en.wikipedia.org/wiki/CRC-32#Implementation

28

Example G(x)

ad 32 bits CRC:
o CRC32: Xx32 + xP0 + x23 + xP2 + xA6 + 2 + Al + x40 4+ x8 4+ x7 + XD

+ X0+ X2+ x+ 1

o used by Ethernet, FDDI, PKZIP, WinZip, and PNG

G X)=X*+ X+ 1
(X)=X"4+X+4+1 G(X)=X*+ X+ X +1

d GSM phones
i G

Type Ia

50

-

Type Ib

VYocoder

J
!

132
J

Error
Detection

I

-

-

78

4

0 ——mt

Convolutional encoder

1/2

r =

K-=5

189

|

189

MPX

378

L

Type I

Y

)
i

436

O For more details see the link below and further links it

contains:

o http://enwikipedia.org/wiki/Cyclic_redundancy_check

29

Qutline

a Admin and recap

a Transport overview

a UDP

> Reliable data transter

30

Principles of Reliable Data
Transfer (RDT)

d Important in app., transport, link layers
0 Foundation to other protocols

0 We use the development of RDT to also better
appreciate understanding distributed protocols

31

Reliable Data Transfer

-
O
O 0
S, = ‘reoeiver I
% -~ OrOCess process
G 1
dt send -
= reliable chcmnel)j et sency deliver data()
8 o) reliable data reliable data
B > fransfer protfocol transfer protocol
% O (sending side) (receiving side)

udt_send()i Irdt_rcv()
T—b()unrelic:ble chonnel)i

(a) provided service (b) service implementation

32

Reliable Data Transfer: Getting

Started

rdt send () : called from above,

(e.g., by app.)

\ rdt send()
send [reliable data

data

fransfer profocol

side |sending side)

udt send() | packet

deliver data() : called by
rdt to deliver data to upper

/

data Tdel iver data()

reliable data receive
fransfer protocol id
(receiving side) Side

packet

rdt rcv()

1A—b()unrelicsible channel)41

udt send () : called by rdft,
to transfer packet over

unreliable channel to receiver

rdt rcv() : called from below;
when packet arrives on rcv-side of
channel

33

Reliable Data Transfer: Getting
Started

We' ll:
a incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

a consider only unidirectional data transfer
o but control info will flow on both directions !

Q use finite state machines (FSM) to specify
sender, receiver

event causing state transition
actions taken on state transition

state: when in this
“state” next state
uniquely determined
by next event

/ \
event
actions

|

34

Qutline

a Admin and review
a Overview of transport layer
O UDP and error checking

0 Reliable data transfer
> perfect channel

35

Rdt1.0: reliable transfer over a reliable channel

0 separate FSMs for sender, receiver:

o sender sends data into underlying channel
o receiver reads data from underlying channel

rdt_send(data) " %Aait for rdt_rcv(packet)
call from tract ket dat
packet = make_pkt(data) bolow extract (packet,data)

deliver_data(data)

udt_send(packet)

sender receiver

Exercise: Prove correctness of Rdt1.0.

Correctness: for every single packet, one and only one copy is
received by receiver correctly (no error) and in-order

36

Potential Channel Errors

Abit errors
Qloss (drop) of packets

Qreordering or duplication

Characteristics of unreliable channel will determine complexity of
reliable data transfer protocol (rdt).

37

