Network Transport Layer: Sliding
Window, TCP

Qiao Xiang, Congming Gao

https://sngroup.org.cn/courses/cnns-
xmuf23/index.shtml

11/09/2023

This deck of slides are heavily based on CPSC 433/533 at Yale University, by courtesy of Dr. Y. Richard Yang.

Qutline

a Admin and recap
Q Reliable data transfer

Admin

A Don't forget to bring your cheatsheet this
afternoon

Recap: Reliable Data Transfer Context

rdt send()

(e.g., by app.)

- called from above,

\

send
side

udt send() | packet

rdt send() {[data

reliable data
fransfer profocol
(sending side)

deliver data() : called by
rdt to deliver data to upper

/

data Tdel iver data()

reliable data receive
fransfer protocol id
(receiving side) Side

packet

rdt rcv()

1A—b()unrelicsible channel)41

udt send () : called by rdft,
to transfer packet over
unreliable channel to receiver

rdt rcv() : called from below;
when packet arrives on rcv-side of
channel

Recap: Reliable Data Transfer Setting

We' ll:

a incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

a consider only unidirectional data transfer
o but control info will flow on both directions !

Q use finite state machines (FSM) to specify

sender, receiver
event causing state transition

actions taken on state transition

/ \
event
actions

state: when in this
“state” next state
uniquely determined
by next event

rdt3.0: Channels with Errors andlLoss

New assumption:
underlying channel can

also lose packets (data

or ACKSs)

o checksum, seq. #, ACKs,
retransmissions will be of

help, but not enough

Q: Does rdt2.2 work
under losses?

Approach: sender waits

“reasonable” amount of
time for ACK

requires countdown timer

retransmits if no ACK
received in this time

if pkt (or ACK) just delayed
(not lost):
o retransmission will be

duplicate, but use of seq.
#’ s already handles this

o receiver must specify seq
of pkt being ACKed

rdt3.0 Sender

\

rdt_rcv(rcvpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
iSACK(rcvpkt,0))

A

rdt send(data)

rdt_rcv(rcvpkt) &&

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
\ start_timer

timeout
udt_send(sndpkt) Cl
start_timer

(corrupt(rcvpkt) ||
iISACK(rcvpkt,1))
—udt _send{shaprt- A

timeout

udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

stop_timer

rdt_rcv(rcvpkt)

rdt_send(data) A

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt3.0: Stop-and-Wait Performance

sender receiver

first packet bit transmitted, t = 0 - ------ oo
last packet bit transmitted, t = L/ Ry

first packet bit arrives

RTT —last packet bit arrives, send ACK

ACK arrives, send next,
packet, t=RTT+L/R

What is Ugngers Utilization — fraction of time link busy sending?

Assume: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet

Performance of rd+3.0

a rdt3.0 works, but performance stinks
0 Example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

~_ L (packet length in bits) _ 8kb/pkt
transmit R (transmission rate, bps) ~ 10**9 b/sec

= 8 microsec

U L /R 008

dor™ — = 0.00027
sender RTT+L/R 30008

o 1KB pkt every 30 msec -> 33kB/sec throughput over 1 Gbps link
o hetwork protocol limits use of physical resources |

A Summary of Questions

a How to improve the performance of rdt3.0?

O What if there are reordering and
duplication?

d How to determine the “right” timeout
value?

10

Sliding Window Protocols: Pipelining

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged pkts
o range of sequence numbers must be increased
o buffering at sender and/or receiver

<+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

11

Pipelining: Increased Utilization

sender

receiver

first packet bit transmitted, t = 0 - ---- oo
last bit transmitted, t =L/ R;

first packet bit arrives
last packet bit arrives, send ACK

last bit of 2"d packet arrives, send ACK
last bit of 3" packet arrives, send ACK

RTT

ACK arrives, send next|
packet, t=RTT + L/ R'_ ----------------

Q@

increase utilization
y a factor of 3!

.. .

U = 3*L/R :Ef = 0.0008
sender RTT+L/R 30 008

Question: a rule-of-thumb window size?
12

Realizing Sliding Window: Go-Back-n

Sender:

O k-bit seq # in pkt header
O “window” of up to W, consecutive unack’ ed pkts allowed

send_base hextsegnum dlready Usable. hof
l' ly ack’ed yet sent
JIRECCCLEATEREION00D | oo [eroncoe
+ _ window size —*%
W

O ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”

o hote: ACK(n) could mean two things: I have received upto and
include n, or I am waiting for n

Q timer for the packet at base
Q timeout(n) retransmit pkt n and all higher seq # pkts in window

13

GBN: Sender FSM

rdt_send(data)

If (nextseqnum < base+W) {
sndpkt[nextsegnum] = make_pkt(nextseqgnum,data,chksum)
udt_send(sndpkt[nextsegnum])
if (base == nextseqnum) start_timer
nextseqnum-++
} else
block sender

L4
*
-
v
*
L4
*
L 4
.#
L4

base=1 . _
nextseqnum=1 ", (D timeout

""""" . start_timer
3 udt_send(sndpkt[base])
G udt_send(sndpkt[base+1])
rdt_rcv(rcvpkt)

&8 corrupt(rcvpkt) Q udt_send(sndpkt[nextsegnum-1])

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

T

if (more packets waiting) . .
send more packets + _ window size —*%

} N
if (base == nextseqnum)

stop_timer
else

start_timer for the packet at new base

send_base nhextsegnum

GBN: Receiver FSM

ﬂult
udt_send(sndpkt) rdt_rcv(rcvpkt)
T~ o - && notcurrupt(rcvpkt)
A && hasseqnum(rcvpkt,expectedseqgnum)
expectedseqnum=1 A:-Dextract (rcvpkt,data)

sndpkt = deliver_data(data)

make_pkt(expectedsegnum,ACK,chksum) sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

Only state. expectedsegnum

Q out-of-order pkt:
o discard (don’ t buffer) -> no receiver buffering
o re-ACK pkt with highest in-order seq #
o may generate duplicate ACKs

15

GBN in

Action

window
size =4

sender

receiver

send pki0 \

send Pkt
¥ send pki2

send pkt3
(wait)

rcv ACKO
send pkt4

rcv ACKI

send pkt5 \

—pkt2 tfimeout
send ka2
send pkt3
send ka4
send pktd

\(Ibczss)

=

rcv pkto
send ACKO

rcv pPkrl
send ACK

rcv pktd, discard
send ACK

rcv pktd, discard
send ACK]

rcv pkitd, discard
seng ACK]

rcv pkt2, deliver

send ACK?
rcv pkt3, deliver

send ACKS3

16

Analysis: Efficiency of Go-Back-n
d Assume window size W
ad Assume each packet is lost with probability p

0 On average, how many packets do we send for
each data packet received?

17

Selective Repeat

d Sender window
o Window size W: W consecutive unACKed seq #' s
Q Receiver /ndividually acknowledges correctly
received pkts

o buffers out-of-order pkts, for eventual in-order
delivery to upper layer

o ACK(n) means received packet with seq# n only
o buffer size at receiver: window size

O Sender only resends pkts for which ACK not

received
o sender timer for each unACKed pkt

18

Selective Repeat: Sender, Receiver Windows

send_base nextsegnum dlready Usable. hot
i' iv ack’ed yet sent
00T 000] e
y S wEndow size —24
Y

i (a) sender view of sequence numbers

out of order

acceptable
(buffered) but — } (within window)
already ack’ed

I]ﬂl]ﬂﬂﬂﬂlll]l||||||||||||||]|]|] |Epecte cer et

L _ window size 2

\%Y%
rcv_base

(b) receiver view of sequence numbers

19

—senden

Selective Repeat

data from above :

O unACKed packets is less than
window size W, send;
otherwise block app.

timeout(n):
Q resend pkt n, restart timer
AC K(n) In [sendbase,sendbase+W-1]:

O mark pkt n as received

O update sendbase to the first
packet unACKed

— receiver

ka nin [rcvbase, rcvbase+W-1]
Q send ACK(n)

Q if (out-of-order)
mark and buffer pkt n
else /*in-order*/

deliver any in-order
packets

otherwise:
O ignhore

20

Selective Repeat in Action

pktl =ent

pktl =sent

pkt2 =ent

pkt3 =sent.
012 31456 7839

012 3456 7839

window full

ACKD rcvd, pktd sent

011 2 3 4

56 7889

ACKl rcvd, pkt§S =ent

01|12 3 4 5|6 7 89

—— pkt2 TIHMHEQUT, pkt2 resent

01|2 3 4 5(6 7 89

ACK3 rcvd, nothing sent

01|2 3 4 5(6 7 889

0123456789 X

(loss)

Bl ARk #82 ﬁq—_hHHE—__hkﬂ“__‘ﬂF pkt0 rcwvd, delivered, ACKD sent

011 2 3 4|56 7 89

pktl rcvd, delivered. ACKl sent
0 1|2 3 4 5|6 7 89

pkt3 rcvd, buf fered., ACK3 =ent
01|12 3 45|6 7 89

pktd rcvd, buffered, ACK4 =ent
012 3 4 5|6 7 8 9

pktS rcvd, buf fered, ACKS sent
0 1|2 3 4 5|6 7 89

pkt2 rcvd, pkt2,.pkt3,pktd, pkths
delivered, ACKZ =ent

012345k 7889

21

Discussion: Efficiency of Selective Repeat

d Assume window size W

O Assume each packet is lost with probability
P

a On average, how many packets do we send
for each data packet received?

22

S e I ec 1- i Ve R e p ea.l- : Sender window Receiver window

(after receipt) ; (after receipt)

Seq# Ambiguity exzse:s s

0123012 pktl

ACKO 0123012

ACK1 0123012
Example: 0123012 -pkt2

ACK2 0123012

AAN

0 seq#'s:0,1,2,3 /
O window size=3 R %
retransmit pkto0 ‘,/’//”
X
0123012 pkt0 ,° receive packet
Q Error: incorrectly with seq number 0
1 Sender window Receiver window
passes dUpllCGTe daTa (after receipt) (after receipt)
as hew. |

0123012 :pkto

y

ACKO 0123012
0123012 pktl

ACK1 0123012
0123012 pkt2

ACK2 0123012

A

0123012 pkt3

0123012 -pkto

— receive packet

with seq number 0

23

State Invariant:

Window Location

0 Go-back-n (GBN)

_

sender window

>

receiver window

0 Selective repeat (SR)

i

>

sender window

>

receiver window

>

24

Window Location

0 Go-back-n (GBN)

_

Q: what relationship
between seq # size and
window size?

sender window

>

receiver window

0 Selective repeat (SR)

i

>

sender window

>

receiver window

>

25

—senden

Selective Repeat

data from above :

O unACKed packets is less than
window size W, send;
otherwise block app.

timeout(n):
Q resend pkt n, restart timer
AC K(n) In [sendbase,sendbase+W-1]:

O mark pkt n as received

O update sendbase to the first
packet unACKed

— receiver

ka nin [rcvbase, rcvbase+W-1]
Q send ACK(n)
Q if (out-of-order)
mark and buffer pkt n
else /*in-order*/
deliver any in-order
packets

pkt nin [rcvbase-W, rcvbase-1]
Q send ACK(n)

otherwise:
O ignhore

26

Sliding Window Protocols:

Go-back-n and Selective Repeat

Go-back-n

Selective Repeat

data bandwidth: sender
to receiver

(avg. number of fimes a
pkt is transmitted)

Less efficient

1—-p+pw
lI—-p

More efficient

I-p

ACK bandwidth
(receiver to sender)

More efficient

Less efficient

Relationship between M (the

number of seq#) and W M>W M>2W
(window size)

Buffer size at 1 W
receiver

Complexity Simpler More complex

p: the loss rate of a packet; M: number of seg# (e.g., 3 bit M = 8); W: window size

27

Qutline

a Admin and Recap

1 Reliable data transfer

o perfect channel

o channel with bit errors

o channel with bit errors and losses

o sliding window: reliability with throughput
> TCP reliability

28

TCP: Overview recs: 793, 1122, 1323, 2018, 2581

a Point-to-point reliability: one sender, one receiver

a Flow controlled and congestion controlled

29

Evolution of TCP

1984
Nagel’s algorithm 1987
1975 to reduce overhead Karn’s algorithm
TH handshak of small packets; to better estimate
ree-way handshake predicts congestion round-trip time
Ray Tomlinson collapse
In SIGCOMM 75 1988
Van Jacobson’s
1983 algorithms
BSD Unix 4.2 1986 :
1974 supports TCP/IP Congestion congestion
TCP described by collapse avoidance, fast
Vint Cerf, Bob Kahn 1st observed
1981
In IEEE Trans Comm TCP & IP
4.3BSD Tahoe)
—l S EEEERER
1975 1980 1985 1990

Source: http://webcourse.cs.technion.ac.il/236341/Winter2015-2016/ho/WCFiles/Tutorial 1 0.pdf

30

Evolution of TCP

NewReno
modified fast
recovery
SACKTCP

1993 1994
TCP Vegas(not ECN 1996 A
implemented) Explicit Improving TCP
real congestion Congestion startup
avoidance Notification (ng)
/

(Brakmo et al) (Floyd)

\
\
\
\
\
1 f /M
J
\ f’
/
\ f
\
\

: EEEEEREEERENRI é
1993 1994 1996 016

Source: http://webcourse.cs.technion.ac.il/236341/Winter2015-2016/ho/WCFiles/Tutorial 10.pdf

31

TCP Reliable Data Transfer

Q Connection-oriented: Q A sliding window protocol
o connection management o a combination of go-back-n
+ setup (exchange of and selective repeat:
control msgs) init’s - send & receive buffers
sender, receiver state . cumulative acks
before data exchange

- TCP uses a single

+ close retransmission timer
a Full duplex data: - do not retransmit all
o bi-directional data flow packets upon timeout

In same connection

socket

socket
door —

~ " door

TCP TCP
send buffer receive buffer

() segment] —» ()

32

TCP Segment Structure

32 bits

URG: urgent data
(generally not used) ~x_

source port # | dest port #

ACK: ACK #

/sequence- pt(mber'

valid

PSH: push data how
(generally not used)/

\owedg/eﬁ'\enf number
head]/not KP/I,BSE rcvr window size
Sed

h urgent data

RST, SYN, FIN:— |

7//ons (variable length)

connection
management
(reset, setup
teardown

commands
Also in UDP

Z

application
data
(variable length)

counting

by bytes

of data

(not segments!)

flow control

33

