
Network Transport Layer: Sliding
Window, TCP

Qiao Xiang, Congming Gao

https://sngroup.org.cn/courses/cnns-
xmuf23/index.shtml

11/09/2023

This deck of slides are heavily based on CPSC 433/533 at Yale University, by courtesy of Dr. Y. Richard Yang.

Outline

q Admin and recap
q Reliable data transfer

2

Admin
q Don't forget to bring your cheatsheet this

afternoon

3

4

Recap: Reliable Data Transfer Context

send
side

receive
side

rdt_send(): called from above,
(e.g., by app.)

udt_send(): called by rdt,
to transfer packet over

unreliable channel to receiver

rdt_rcv(): called from below;
when packet arrives on rcv-side of

channel

deliver_data(): called by
rdt to deliver data to upper

5

Recap: Reliable Data Transfer Setting

We’ll:
q incrementally develop sender, receiver sides of

reliable data transfer protocol (rdt)
q consider only unidirectional data transfer

o but control info will flow on both directions !
q use finite state machines (FSM) to specify

sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this
“state” next state

uniquely determined
by next event

event
actions

6

rdt3.0: Channels with Errors and Loss

New assumption:
underlying channel can
also lose packets (data
or ACKs)
o checksum, seq. #, ACKs,

retransmissions will be of
help, but not enough

Q: Does rdt2.2 work
under losses?

Approach: sender waits
“reasonable” amount of
time for ACK

q requires countdown timer
q retransmits if no ACK

received in this time
q if pkt (or ACK) just delayed

(not lost):
o retransmission will be

duplicate, but use of seq.
#’s already handles this

o receiver must specify seq
of pkt being ACKed

7

rdt3.0 Sender

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait
for
ACK0

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,1))

Wait for
call 1 from
above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,0))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer
stop_timer

timeout
udt_send(sndpkt)
start_timer

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for
call 0 from
above

Wait
for
ACK1

L
rdt_rcv(rcvpkt)

L
L

L

udt_send(sndpkt)

rdt3.0: Stop-and-Wait Performance

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

What is Usender: utilization – fraction of time link busy sending?

Assume: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet
8

9

Performance of rdt3.0

q rdt3.0 works, but performance stinks
q Example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

Ttransmit = 8kb/pkt
10**9 b/sec = 8 microsec

o 1KB pkt every 30 msec -> 33kB/sec throughput over 1 Gbps link
o network protocol limits use of physical resources !

U
sender =

.008
30.008

= 0.00027
microsec
onds

L / R
RTT + L / R

=

L (packet length in bits)
R (transmission rate, bps) =

A Summary of Questions

q How to improve the performance of rdt3.0?

q What if there are reordering and
duplication?

q How to determine the “right” timeout
value?

10

Sliding Window Protocols: Pipelining

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged pkts
o range of sequence numbers must be increased
o buffering at sender and/or receiver

11

Pipelining: Increased Utilization

first packet bit transmitted, t = 0
sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

U
sender =

.024
30.008

= 0.0008
microsecon
ds

3 * L / R
RTT + L / R

=

increase utilization
by a factor of 3!

Question: a rule-of-thumb window size?
12

Realizing Sliding Window: Go-Back-n
Sender:
q k-bit seq # in pkt header
q “window” of up to W, consecutive unack’ed pkts allowed

q ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”
o note: ACK(n) could mean two things: I have received upto and

include n, or I am waiting for n
q timer for the packet at base
q timeout(n): retransmit pkt n and all higher seq # pkts in window

W

13

GBN: Sender FSM

Wait
start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+W) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum) start_timer
nextseqnum++

} else
block sender

if (new packets ACKed) {
advance base;
if (more packets waiting)

send more packets
}
if (base == nextseqnum)
stop_timer

else
start_timer for the packet at new base

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base=1
nextseqnum=1

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

L

14

GBN: Receiver FSM

Only state: expectedseqnum
q out-of-order pkt:

o discard (don’t buffer) -> no receiver buffering!
o re-ACK pkt with highest in-order seq #
o may generate duplicate ACKs

Wait

udt_send(sndpkt)
default

rdt_rcv(rcvpkt)
&& notcurrupt(rcvpkt)
&& hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =
make_pkt(expectedseqnum,ACK,chksum)

L

15

GBN in
Action
window
size = 4

16

Analysis: Efficiency of Go-Back-n

q Assume window size W

q Assume each packet is lost with probability p

q On average, how many packets do we send for
each data packet received?

17

Selective Repeat

q Sender window
o Window size W: W consecutive unACKed seq #’s

q Receiver individually acknowledges correctly
received pkts
o buffers out-of-order pkts, for eventual in-order

delivery to upper layer
o ACK(n) means received packet with seq# n only
o buffer size at receiver: window size

q Sender only resends pkts for which ACK not
received
o sender timer for each unACKed pkt

18

Selective Repeat: Sender, Receiver Windows

W

W

19

Selective Repeat

data from above :
q unACKed packets is less than

window size W, send;
otherwise block app.

timeout(n):
q resend pkt n, restart timer
ACK(n) in [sendbase,sendbase+W-1]:

q mark pkt n as received
q update sendbase to the first

packet unACKed

sender
pkt n in [rcvbase, rcvbase+W-1]

q send ACK(n)
q if (out-of-order)

mark and buffer pkt n
else /*in-order*/

deliver any in-order
packets

otherwise:
q ignore

receiver

20

Selective Repeat in Action

21

Discussion: Efficiency of Selective Repeat

q Assume window size W

q Assume each packet is lost with probability
p

q On average, how many packets do we send
for each data packet received?

22

Selective Repeat:
Seq# Ambiguity

Example:
q seq #’s: 0, 1, 2, 3
q window size=3

q Error: incorrectly
passes duplicate data
as new.

23

State Invariant: Window Location

q Go-back-n (GBN)

q Selective repeat (SR)

sender window

receiver window

sender window

receiver window

24

Window Location
q Go-back-n (GBN)

q Selective repeat (SR)

sender window

receiver window

sender window

receiver window

Q: what relationship
between seq # size and
window size?

25

Selective Repeat

data from above :
q unACKed packets is less than

window size W, send;
otherwise block app.

timeout(n):
q resend pkt n, restart timer
ACK(n) in [sendbase,sendbase+W-1]:

q mark pkt n as received
q update sendbase to the first

packet unACKed

sender
pkt n in [rcvbase, rcvbase+W-1]

q send ACK(n)
q if (out-of-order)

mark and buffer pkt n
else /*in-order*/

deliver any in-order
packets

pkt n in [rcvbase-W, rcvbase-1]
q send ACK(n)
otherwise:
q ignore

receiver

26

Sliding Window Protocols:
Go-back-n and Selective Repeat

Go-back-n Selective Repeat

data bandwidth: sender
to receiver
(avg. number of times a
pkt is transmitted)
ACK bandwidth
(receiver to sender)
Relationship between M (the
number of seq#) and W
(window size)

Buffer size at
receiver
Complexity

p: the loss rate of a packet; M: number of seq# (e.g., 3 bit M = 8); W: window size

More efficient Less efficient

M > W M ≥ 2W

1 W

Simpler More complex

Less efficient

p
pwp

-
+-
1

1

More efficient
p-1
1

27

Outline

q Admin and Recap
q Reliable data transfer

o perfect channel
o channel with bit errors
o channel with bit errors and losses
o sliding window: reliability with throughput

Ø TCP reliability

28

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

q Point-to-point reliability: one sender, one receiver

q Flow controlled and congestion controlled

29

Evolution of TCP

Source: http://webcourse.cs.technion.ac.il/236341/Winter2015-2016/ho/WCFiles/Tutorial10.pdf

30

Evolution of TCP

Source: http://webcourse.cs.technion.ac.il/236341/Winter2015-2016/ho/WCFiles/Tutorial10.pdf

multiple
versions

31

TCP Reliable Data Transfer
q Connection-oriented:

o connection management
• setup (exchange of

control msgs) init’s
sender, receiver state
before data exchange

• close
q Full duplex data:

o bi-directional data flow
in same connection

q A sliding window protocol
o a combination of go-back-n

and selective repeat:
• send & receive buffers
• cumulative acks
• TCP uses a single

retransmission timer
• do not retransmit all

packets upon timeout

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

32

TCP Segment Structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

rcvr window size
ptr urgent datachecksum

FSRPAUhead
len

not
used

Options (variable length)RST, SYN, FIN:
connection

management
(reset, setup

teardown
commands)

flow control

ACK: ACK #
valid

counting
by bytes
of data
(not segments!)

Also in UDP

URG: urgent data
(generally not used)

PSH: push data now
(generally not used)

33

