
Network Transport Layer: TCP

Qiao Xiang, Congming Gao

https://sngroup.org.cn/courses/cnns-
xmuf23/index.shtml

11/14/2023

This deck of slides are heavily based on CPSC 433/533 at Yale University, by courtesy of Dr. Y. Richard Yang.

Outline

q Admin and recap
q TCP Reliability

2

Admin
q Lab 3 due on Nov. 19
q Lab 4 to be posted this week

3

4

Recap: Reliable Data Transfer Context

send
side

receive
side

rdt_send(): called from above,
(e.g., by app.)

udt_send(): called by rdt,
to transfer packet over

unreliable channel to receiver

rdt_rcv(): called from below;
when packet arrives on rcv-side of

channel

deliver_data(): called by
rdt to deliver data to upper

5

Recap: Reliable Transport

q Basic structure: sliding window protocols

q Realization: GBN or SR
Go-back-n Selective Repeat

data bandwidth: sender
to receiver
(avg. number of times a
pkt is transmitted)
ACK bandwidth
(receiver to sender)
Relationship between M (the
number of seq#) and W
(window size)

Buffer size at
receiver
Complexity

More efficient Less efficient

M > W M ≥ 2W

1 W

Simpler More complex

Less efficient

p
pwp

-
+-
1

1

More efficient
p-1
1

General
technique:
pipelining.

Outline

q Admin and Recap
Ø TCP reliability

6

TCP Reliable Data Transfer
q Connection-oriented:

o connection management
• setup (exchange of

control msgs) init’s
sender, receiver state
before data exchange

• close
q Full duplex data:

o bi-directional data flow
in same connection

q A sliding window protocol
o a combination of go-back-n

and selective repeat:
• send & receive buffers
• cumulative acks
• TCP uses a single

retransmission timer
• do not retransmit all

packets upon timeout

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

7

TCP Segment Structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

rcvr window size
ptr urgent datachecksum

FSRPAUhead
len

not
used

Options (variable length)RST, SYN, FIN:
connection

management
(reset, setup

teardown
commands)

flow control

ACK: ACK #
valid

counting
by bytes
of data
(not segments!)

Also in UDP

URG: urgent data
(generally not used)

PSH: push data now
(generally not used)

8

Outline

q Admin and Recap
q Reliable data transfer

o perfect channel
o channel with bit errors
o channel with bit errors and losses
o sliding window: reliability with throughput

q TCP reliability
Ø data seq#, ack, buffering

9

Flow Control

q receive side of a
connection has a
receive buffer:

q speed-matching
service: matching the
send rate to the
receiving app’s drain
rate

q app process may be
slow at reading from
buffer

sender won’t overflow
receiver’s buffer by

transmitting too much,
too fast

flow control

10

TCP Flow Control: How it Works

q spare room in buffer
= RcvWindow

source port # dest port #

application
data

(variable length)

sequence number
acknowledgement number

rcvr window size

ptr urgent datachecksum

FSRPAUhead
len

not
used

Options (variable length)

11

TCP Seq. #’s and ACKs
Seq. #’s:

q byte stream
“number” of first
byte in segment’s
data

ACKs:
q seq # of next byte

expected from
other side

q cumulative ACK in
standard header

q selective ACK in
options

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types
‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

time
simple telnet scenario

12

TCP Send/Ack Optimizations

q TCP includes many tune/optimizations, e.g.,
o the “small-packet problem”: sender sends a lot of

small packets (e.g., telnet one char at a time)
• Nagle’s algorithm: do not send data if there is small

amount of data in send buffer and there is an unack’d
segment

o the ”ack inefficiency” problem: receiver sends too
many ACKs, no chance of combing ACK with data

• Delayed ack to reduce # of ACKs/combine ACK with
reply

13

TCP Receiver ACK Generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

TCP Receiver Action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment starts at lower end of gap

14

Outline

q Admin and Recap
q Reliable data transfer

o perfect channel
o channel with bit errors
o channel with bit errors and losses
o sliding window: reliability with throughput

q TCP reliability
o data seq#, ack, buffering
Ø timeout realization

15

TCP Reliable Data Transfer

q Basic structure: sliding window protocol
q Remaining issue: How to determine the
“right” parameters?
o timeout value?
o sliding window size?

16

History

q Key parameters for TCP in mid-1980s
o fixed window size W
o timeout value = 2 RTT

q Network collapse in the mid-1980s
o UCB ßà LBL throughput dropped by 1000X !

q The intuition was that the collapse was
caused by wrong parameters…

17

Timeout: Cost of Timeout Param
Why is good timeout value important?
q too short

o premature timeout
o unnecessary retransmissions; many duplicates

q too long
o slow reaction to segment loss

Q: Is it possible to set Timeout as a constant?

Q: Any problem w/ the early approach: Timeout = 2 RTT

18

Setting Timeout
Problem:
q Ideally, we set timeout = RTT,

but RTT is not a fixed value
=>
using the average of RTT will generate
many timeouts due to network variations

q Possibility: using the average/median of RTT
q Issue: this will generate many timeouts due to network variations

Solution:
q Set Timeout RTO = avg + “safety margin” based on variation

Timeout = EstRTT + 4 * DevRTT

TCP approach:

RTT

freq.

19

Compute EstRTT and DevRTT

EstRTT = (1-alpha)*EstRTT + alpha*SampleRTT

q Exponential weighted moving average (EWMA)
o influence of past sample decreases exponentially fast

- SampleRTT: measured time
from segment transmission
until ACK receipt

- typical value: alpha = 0.125

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

RT
T

(m
ill

is
ec

on
ds

)

SampleRTT Estimated RTT

DevRTT = (1-beta)*DevRTT + beta|SampleRTT-EstRTT|

(typically, beta = 0.25)

20

An Example TCP Session

21

Fast Retransmit

q Issue: Timeout period often relatively long:
o long delay before resending lost packet

q Question: Can we detect loss faster than RTT?

q If sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:
o resend segment before

timer expires

q Detect lost segments via
duplicate ACKs
o sender often sends many

segments back-to-back
o if segment is lost, there will

likely be many duplicate ACKs

22

Triple Duplicate Ack

1 2 3 4 5 6
Packets

Acknowledgements (waiting seq#)

7

2 3 4 4 4 4

23

event: ACK received, with ACK field value of y
if (y > SendBase) {

…
SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer
…

}
else {

increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {

resend segment with sequence number y
…

Fast Retransmit:

a duplicate ACK for
already ACKed segment fast retransmit

24

TCP:
reliable
data
transfer

00 sendbase = initial_sequence number agreed by TWH
01 nextseqnum = initial_sequence number by TWH
02 loop (forever) {
03 switch(event)
04 event: data received from application above
05 if (window allows send)
06 create TCP segment with sequence number nextseqnum
06 if (no timer) start timer
07 pass segment to IP
08 nextseqnum = nextseqnum + length(data)

else put packet in buffer
09 event: timer timeout for sendbase
10 retransmit segment
11 compute new timeout interval
12 restart timer
13 event: ACK received, with ACK field value of y
14 if (y > sendbase) { /* cumulative ACK of all data up to y */
15 cancel the timer for sendbase
16 sendbase = y
17 if (no timer and packet pending) start timer for new sendbase
17 while (there are segments and window allow)
18 sent a segment;
18 }
19 else { /* y==sendbase, duplicate ACK for already ACKed segment */
20 increment number of duplicate ACKs received for y
21 if (number of duplicate ACKS received for y == 3) {
22 /* TCP fast retransmit */
23 resend segment with sequence number y
24 restart timer for segment y
25 }
26 } /* end of loop forever */

Simplified
TCP
sender

25

Outline

q Admin and Recap
q Reliable data transfer

o perfect channel
o channel with bit errors
o channel with bit errors and losses
o sliding window: reliability with throughput

q TCP reliability
o data seq#, ack, buffering
o timeout realization
Ø connection management

26

Why Connection Setup/When to
Accept (Safely Deliver) First Packet?

sender receiver

ACK for 0

accept

data 0

27

Why Connection Setup/When to
Accept (Safely Deliver) First Packet?

sender receiver

ACK for 0 (n)
accept

data 0 (transfer $1000 to B)

data 0 (transfer $1000 to B)

accept?

2828

Transport “Safe-Setup” Principle

q A general safety principle for a receiver R
to accept a message from a sender S is the
general “authentication” principle, which
consists of two conditions:
Transport authentication principle:
- [p1] Receiver can be sure that what Sender says is fresh
- [p2] Receiver receives something that only Sender can say

We first assume a secure setting: no malicious attacks.

Exercise: Techniques to allow a receiver to check for freshness
(e.g., add a time stamp)?

29

Generic Challenge-Response
Structure Checking Freshness

sender receiver

Challenge (nonce)
deliver

I have data to send

Demonstrate knowing nonce; data

30

Three Way Handshake (TWH) [Tomlinson 1975]

Host A

SYN(seq=x)

Host B

ACK(seq=x), SYN(seq=y)

ACK(seq=y)

DATA(seq=x+1)

SYN: indicates connection setup

accept data only after
verified y is bounced back
x is the init. seq

notify initial seq#. Accept?

think of y as a challenge

31

Make “Challenge y” Robust

q To avoid that “SYNC ACK y” comes from
reordering and duplication
o for each connection (sender-receiver pair), ensuring that

two identically numbered packets are never outstanding
at the same time

• network bounds the life time of each packet
• a sender will not reuse a seq# before it is sure that all packets

with the seq# are purged from the network
• seq. number space should be large enough to not limit

transmission rate

q Increasingly move to cryptographic challenge and
response

34

Connection Close

q Why connection close?
o so that each side can

release resource and
remove state about the
connection (do not want
dangling socket)

client server

I am done. Are you done too?

I am done too. Goodbye!

init. close

close

close

release
resource?

release
resource?

release
resource?

35

General Case: The Two-Army Problem

The gray (blue) armies need to agree on whether or not they will attack the white army. They
achieve agreement by sending messengers to the other side. If they both agree, attack; otherwise,
no. Note that a messenger can be captured!

36

Time_Wait
q Generic technique: Timeout to “solve” infeasible

problem
o Instead of message-driven state transition, use a timeout

based transition; use timeout to handle error cases

37

client server

I am done. Are you done too?

I am done too. Goodbye!

init. close

close

close

release
resource?

release
resource?

release
resource?

ClosedWorking

Time_WaiitWorking Closed

Time_Wait Design Options

- Time to
retransmit
ACK

Host A

FIN

Host B

ACK

close

Design 2 (receiver time wait)

Close after
first ACK
All states removed

All states removed

Host A

FIN

Host B

ACK

close

- Time = n x timeout
- Time to retry FIN

after each timeout

Design 1 (initiator time wait)

Close after receive FIN
All states removed

All states
removed

38

TCP Four Way Teardown
(For Bi-Directional Transport)

Host A

FIN

Host B

ACK

ACK

FIN

close

close

closed
all states removed

ti
m

ed
 w

ai
t

- can retransmit the
ACKif its ACK is lost closed

A->B closed

A->B closed

all states removed

propose close
A->B

propose close
B->A

39

%netstat -t -a CLOSED
LISTEN

SYN
RCVD

SYN

SYN/
ACK

ACK

CLOSED

SYN
SENT

ESTABLSIHED

ESTABLSIHED

FIN

ACK

ACK

FIN
WAIT 1

ESTABLSIHED ESTABLSIHED

CLOSE
WAIT

FIN
LAST
ACK

FIN
WAIT 2

TIME
WAIT

40

TCP Connection Management

TCP lifecycle: init SYN/FIN
CLOSED

SYN
RCVD

SYN

SYN/
ACK

ACK

CLOSED

SYN
SENT

ESTABLSIHED

FIN

ACK

ACK

FIN
WAIT 1

ESTABLSIHED ESTABLSIHED

CLOSE
WAIT

FIN
LAST
ACK

FIN
WAIT 2

TIME
WAIT

http://dsd.lbl.gov/TCP-tuning/ip-sysctl-2.6.txt
41

TCP Connection Management

TCP lifecycle: wait for
SYN/FIN

CLOSED

SYN
RCVD

SYN

SYN/
ACK

ACK

CLOSED

SYN
SENT

ESTABLSIHED

FIN

ACK

ACK

FIN
WAIT 1

ESTABLSIHED ESTABLSIHED

CLOSE
WAIT

FIN
LAST
ACK

FIN
WAIT 2

TIME
WAIT

42

A Summary of Questions

q Basic structure: sliding window protocols
q How to determine the “right” parameters?

ü timeout: mean + variation
o sliding window size?

43

