Network Transport Layer: TCP
Congestion Control

Qiao Xiang, Congming Gao

https://sngroup.org.cn/courses/cnns-
xmuf23/index.shtml

11/16/2023

This deck of slides are heavily based on CPSC 433/533 at Yale University, by courtesy of Dr. Y. Richard Yang.

Qutline

a Admin and recap
A TCP Congestion Control

Admin

3 Lab 3 due on Nev—19 Nov. 22

0 Guest lectures (tentative schedule subject to
change)
o 11/21, Yuchao Zhang, BUPT, Traffic Engineering
o 11/28, Yutong Liu, STTU, Internet of Things

Recap: Three Way Handshake (TWH) [Tomlinson

19759]

@Hosf A

SYN: indicates connection setup
4

Host B@

notify initial seq#. Accept?

think of y as a challenge

accept data only after
verified y 1s bounced back
X 18 the 1nit. seq

Recap: TCP Four Way Teardown
(For Bi-Directional Transport)

@Hosf A Host B@

propose close (|qge

A->B m
A->B closed
/ close Propose close
A->B closed / B->A
k

+—
o
- can retransmit the =
ACKif its ACK is lost- »‘é closed
closed = all states removed

all states removed

Recap: Transport Design

A Basic structure/reliability: sliding window
protocols

A Determine the “right” parameters

o Timeout
o mean + variation

o Sliding window size?

Sliding Window Size Function: Rate Control

A Transmission rate determined by congestion
window size, cwnd, over segments:

send_base nhexfsegnum dlready Usable. not
l' i ack’ed yet sent
TRV TRTIRN0000NT [sepeaea [rotesoee
t cwna

a cwnd segments, each with MSS bytes sent in one
RTT:

cwnd * MSS
RTT

Rate =

Bytes/sec

Assume W 1s small enough. Ignore small details. MSS: Minimum Segment Size

Some General Questions

Big picture question:
ad How to determine a flow' s sending rate?

For better understanding, we need to look at
a few basic questions:

a What is congestion (cost of congestion)?

ad Why are desired properties of congestion
control?

Roadmap

a What is congestion

A The basic CC alg

a TCP/reno CC

a TCP/Vegas

Q A unifying view of TCP/Reno and TCP/Vegas

A Network wide resource allocation
o Framework
o Axiom derivation of network-wide objective function
o Derive distributed algorithm

10

Qutline

a Admin and recap
a TCP Reliability

A Transport congestion control
> what is congestion (cost of congestion)

Cause/Cost of Congestion: Single Bottleneck

flow 1

flow 2 (5 Mbps)

i

- Flow 2 has a fixed sending rate of 5 Mbps
- We vary the sending rate of flow 1 from O to 20 Mbps

- Assume

o ho retransmission; link from router 1 to router 2 has infinite buffer

throughput: e2e packets
delivered in unit time

L] throughput of
ow 1 & 2 (Mbps)

10

sending rate
by flow 1 (Mbps)

11

Delay?
 delay at central link

delay due to
randomness

sending rate
by flow 1 (Mbps)

Cause/Cost of Congestion: Single Bottleneck

router 3 roqter 5

flow 1

flow 2 (5 Mbps)

i

L Assume
o Nho retransmission

o the link from router 1 to router 2 has finite buffer
o throughput: e2e packets delivered in unit time

router 4 router 6

howiesomy MINGE105)+55100 gronned at the link from

10 router 2 to router 5; the
upstream ftransmission

5 by T LS from router 1 to router 2

0 3 "X used for that packet was

wasted!
12

O Zombie packet: a packet

Summary: The Cost of Congestion

: . ket

When sources sending knee cliff — PP®
: =% — loss
rate too high for the 2
network to handle”: 2 .
O congestion
a Packet loss =»> < collapse
o wasted upstream

bandwidth when a pkft is , , X
discarded at X i ' Load
downstream : :

o wasted bandwidth due to
retransmission (a pkt
goes through a link
multiple times)

Delay

Q High delay | " Load

13

14

Qutline

a Admin and recap
a TCP Reliability

A Transport congestion control

o what is congestion (cost of congestion)
> basic congestion control alg.

Rate-based vs. Window-based

Rate-based:

0 Congestion control by
explicitly controlling
the sending rate of a
flow, e.g., set sending
rate to 128Kbps

d Example: ATM

Window-based:

a Congestion control by
controlling the window
size of a sliding window,

e.g., set window size to
64KBytes

a Example: TCP

Discussion: rate-based vs. window-based

15

Sliding Window Size Function: Rate Control

A Transmission rate determined by congestion
window size, cwnd, over segments:

send_base nhexfsegnum dlready Usable. not
l' i ack’ed yet sent
TRV TRTIRN0000NT [sepeaea [rotesoee
t cwna

a cwnd segments, each with MSS bytes sent in one
RTT:

cwnd * MSS
RTT

Rate =

Bytes/sec

Assume W 1s small enough. Ignore small details. MSS: Maximum Segment Size

Window-based Congestion Control

- P

l_ Pb_l

CAl="\L1)

Sender Receiver

T DT [
\

I_ ”\b_|
= A A,

0 Window-based congestion control is self-clocking:
considers flow conservation, and adjusts to RTT
variation automatically.

ad Hence, for better safety, more designs use window-
17 based design.

18

The Desired Properties of a
Congestion Control Scheme

Q Efficiency: close to full utilization but low
delay

- fast convergence after disturbance
a Fairness (resource sharing)

A Distributedness (no central knowledge for
scalability)

Derive CC: A Simple Model

User 1 ~x;

User 2 2

Sum X; >
X

goal?

User n

19

Flows observe congestion signal d, and locally take
actions to adjust rates.

Linear Control

A Proposed by Chiu and Jain (1988)
A The simplest control strategy

‘a, +b,x,(t) if d(t)=no cong.

x (t+1) =+ .
ap+byx;(t) 1 d(t) =cong.

Discussion: values of the parameters?

20

State Space of Two Flows

21

a, +b,x;(t)
ap, +byx,(t)

xl.(t+1):{

if d(t) =no cong.
if d(t) = cong.

fairness
line: x1=x2

underload

7
7
7
4
4
4
7
4
4
e

overload

efficiency line:

/ x1+x2=C

if d(t) = cong.

| a;+bx(¢) it d(t)=no cong.
congestion

efficiency efficiency: distributed linear rule

a=0 p=1

fairness Intersection
22

23

Implication: Congestion (overload) Case

0 In order to get closer to efficiency and
fairness after each update, decreasing of
rate must be multiplicative decrease (MD)

o Qp = 0
o bD <1

a, +b,x,(t) 1if d(t)=no cong.
ap,+by,x,(t) 1f d(t)=cong.

no-congestion |, ;. 1- {

X9

. fairness convergence

Implication: No Congestion Case

0 In order to get closer to efficiency and
fairness after each update, additive and
multiplicative increasing (AMI), i.e.,

® ClI>O,bI>1

a,+b,x.(t) 1f d(t)=no cong.

X+ = { box() ifd(t)=cong.

A Simply additive increase gives better
improvement in fairness (i.e., getting closer
to the fairness line)

A Multiplicative increase may grow faster

25

Intuition: State Trace Analysis

of Four Special Cases

Additive Multiplicative

Decrease Decrease
Additive AIAD AIMD
Increase (br=bp=1) (br=1, ap=0)
Multiplicative MIAD MIMD
Increase (ar=0, b1, bp=1) (ar=ap=0)

a,+b,x(¢t) 1 d(t)=no cong.
X (t+1) =+ .
ap+byx, (1) 1f d(t) = cong.

Discussion: state transition trace.

26

AIMD: State Transition Trace

X2

fairness line:.
x1=x2

. overload

efficiency line:

underload x1+x2=C

28

Intuition: Another Look

Q Consider the difference or ratio of the
rates of two flows
o ATIAD

o difference does not change

o MIMD

o ratio does not change

o MIAD

o difference becomes bigger

o AIMD

o difference does not change

29

Qutline

a Admin and recap
a TCP Reliability

A Transport congestion control
o what is congestion (cost of congestion)
O basic congestion control alg.
> TCP/reno congestion control/

TCP Congestion Control

Q Closed-loop, end-to-end, window-based congestion
control

0O Designed by Van Jacobson in late 1980s, based on
the AIMD alg. of Dah-Ming Chu and Raj Jain

Q Worked in a large range of bandwidth values: the
bandwidth of the Internet has increased by more
than 200,000 times

a Many versions

o TCP/Tahoe: this is a less optimized version

o TCP/Reno: many OSs today implement Reno type
congestion control
o TCP/Vegas: not currently used

For more details: see TCP/IP illustrated; or read
snttp://Ixr.linux.no/source/net/ipv4/tcp input.c for linux implementation

31

Mapping A(M)I-MD to Protocol

a Basic questi
o How to obt

ons to look at:
ain d(t)--the congestion signal?

o What values do we choose for the formula?
o How to map formula to code?

x,(t+1) =+

(a, +x.(t) if d(t)=no cong.

- bpx, (1) if d(t) = cong.

Obtain d(1) Approach 1. End Hosts

Consider Loss as Congestion

32

Packets
T sl s 6]l 7]

Acknowledgements (waiting seq#)

2l [5] [4 I!!

Pros and Cons of Assume loss
endhosts using loss as => con
congestion s S

33

Obtain d(t) Approach 2: Network Feedback
(ECN: Explicit Congestion Notification)

Sender reduces rate if Pros and Cons of ECN?
Sender 1

ECN received.

K Receiver bounces marker
N back to sender in ACK msg
o Receiver
\
N\ ‘
i

ender Network marks ECN Mark

(1 bit) on pkt according

to local condition, e.g.,

queue length > K

0

34

Mapping A(M)I-MD to Protocol

a Basic questi
o How to obt

ons to look at:
ain d(t)--the congestion signal?

o What values do we choose for the formula?
o How to map formula to code?

x,(t+1) =+

(a, +x.(t) if d(t)=no cong.

- bpx, (1) if d(t) = cong.

35

TCP/Reno Formulas

a Multiplicative Increase (MI)
o double the rate: x(t+1) = 2 x(1)

Q Additive Increase (AI)
o Linear increase the rate: x(t+1) = x(1) + 1

O Multiplicative decrease (MD)
o half the rate: x(++1) = 1/2 x(1)

36

TCP/Reno Formula Switching
(Control Structure)

a Two "phases”
o Slow-start

* Goal: getting to equilibrium gradually but quickly, to get a
rough estimate of the optimal of cwnd

- Formula: MI

o congestion avoidance

* Goal: Maintains equilibrium and reacts around equilibrium

- Formula: AT MD

20—1
18 —
16 —
14 —

12—

cwnd
(segments) e
8 —

6 —
4
2

0

ssthresh

37

TCP/Reno Formula Switching
(Control Structure)

d Important variables:
o cwnd: congestion window size
o ssthresh: threshold between the slow-start phase
and the congestion avoidance phase
a If cwnd < ssthresh
o MI

d Else
o AIMD

38

MI. Slow Start

A Algorithm: MI

o double cwnd every RTT until network congested

Q Goal: getting to equilibrium gradually but
quickly, to get a rough estimate of the
optimal of cwnd

MI. Slow-start

Initially:
cwnd = 1;
ssthresh = infinite (e.g., 64K);

For each newly ACKed segment:
if (cwnd < ssthresh)
/* MI: slow start™/

cwnd = cwnd + 1;

cwnd =1

cwnd = 2

cwnd =4

cwnd =6

cwnd =8

o0 0000
<

segment 1
—n
ACK for segment 1
segment 2
segment 3 j

ACK for segments 2+ 3

segment 4
segment 5
segment 6
segment 7

Startup Behavior with Slow-start

(]
@
&
F -
o"/
c"
& | o
g o
2. | s
-8 -
=),./
= &
28 o
T o
T o0
(¥5) "’0
§ 2 I o
- PR
o
o
g ._r/
/
K
S F f_,.»"
.-—
c-—-‘__"
o =t] 1]]
0 2 4 6 8

Send Time (sec)

40 See [Jac89]

10

AIMD: Congestion Avoidance

A Algorithm: ATMD

o increases window by 1 per round-trip time
(how?)

o cuts window size

- to half when detecting congestion by 3DUP
* to 1if timeout
» if already timeout, doubles timeout

d Goal: Maintains equilibrium and reacts
around equilibrium

41

TCP/Reno Full Alg

|

Initially:
cwnd = 1;
ssthresh = infinite (e.g., 64K);
For each newly ACKed segment:
if (cwnd < ssthresh) // slow start: MI
cwnd = cwnd + 1;
else

// congestion avoidance; AT
cwnd += 1/cwnd;

Triple-duplicate ACKs:

// MD
cwnd = ssthresh = cwnd/2;
Timeout:
ssthresh = cwnd/2; // reset
cwnd = 1;

(if already timed out, double timeout value; this is called exponential backoff)

TCP/Reno: Big Picture

cwnd 1

ssthresh

TD

D

/

/
/

/

ssthresh

TO

5

slow
start
(MI)

congestion
avoidance
(AIMD)

TD: Triple duplicate acknowledgements

TO: Timeout
43

congestion
avoidance

r

congestion slow congestion

avoidance

start avoidance

Time

