
Network Transport Layer: TCP
Congestion Control

Qiao Xiang, Congming Gao

https://sngroup.org.cn/courses/cnns-
xmuf23/index.shtml

11/16/2023

This deck of slides are heavily based on CPSC 433/533 at Yale University, by courtesy of Dr. Y. Richard Yang.

Outline

q Admin and recap
q TCP Congestion Control

2

Admin
q Lab 3 due on Nov. 19 Nov. 22
q Guest lectures (tentative schedule subject to

change)
o 11/21, Yuchao Zhang, BUPT, Traffic Engineering
o 11/28, Yutong Liu, SJTU, Internet of Things

3

Recap: Three Way Handshake (TWH) [Tomlinson
1975]

Host A

SYN(seq=x)

Host B

ACK(seq=x), SYN(seq=y)

ACK(seq=y)

DATA(seq=x+1)

SYN: indicates connection setup

accept data only after
verified y is bounced back
x is the init. seq

notify initial seq#. Accept?

think of y as a challenge

4

Recap: TCP Four Way Teardown
(For Bi-Directional Transport)

Host A

FIN

Host B

ACK

ACK

FIN

close

close

closed
all states removed

ti
m

ed
 w

ai
t

- can retransmit the
ACKif its ACK is lost closed

A->B closed

A->B closed

all states removed

propose close
A->B

propose close
B->A

5

6

Recap: Transport Design

q Basic structure/reliability: sliding window
protocols

q Determine the “right” parameters
o Timeout

o mean + variation
o Sliding window size?

Sliding Window Size Function: Rate Control

q Transmission rate determined by congestion
window size, cwnd, over segments:

q cwnd segments, each with MSS bytes sent in one
RTT:

Rate = cwnd * MSS
RTT Bytes/sec

cwnd

Assume W is small enough. Ignore small details. MSS: Minimum Segment Size
7

Some General Questions

Big picture question:
q How to determine a flow’s sending rate?

For better understanding, we need to look at
a few basic questions:
q What is congestion (cost of congestion)?
q Why are desired properties of congestion

control?

8

Roadmap

q What is congestion
q The basic CC alg
q TCP/reno CC
q TCP/Vegas
q A unifying view of TCP/Reno and TCP/Vegas
q Network wide resource allocation

o Framework
o Axiom derivation of network-wide objective function
o Derive distributed algorithm

9

Outline

q Admin and recap
q TCP Reliability
q Transport congestion control

Ø what is congestion (cost of congestion)

10

flow 2 (5 Mbps)

flow 1

router 1 router 2

10 Mbps
5 Mbps20 Mbps

Cause/Cost of Congestion: Single Bottleneck

- Flow 2 has a fixed sending rate of 5 Mbps
- We vary the sending rate of flow 1 from 0 to 20 Mbps
- Assume

o no retransmission; link from router 1 to router 2 has infinite buffer

20 Mbps

20 Mbps

throughput: e2e packets
delivered in unit time

Delay?

sending rate
by flow 1 (Mbps)

throughput of
flow 1 & 2 (Mbps)

5

10

50

sending rate
by flow 1 (Mbps)

delay at central link

50

delay due to
randomness

11

flow 2 (5 Mbps)

flow 1

router 1

10 Mbps
5 Mbps20 Mbps

Cause/Cost of Congestion: Single Bottleneck

qAssume
o no retransmission
o the link from router 1 to router 2 has finite buffer
o throughput: e2e packets delivered in unit time

20 Mbps

20 Mbps

q Zombie packet: a packet
dropped at the link from
router 2 to router 5; the
upstream transmission
from router 1 to router 2
used for that packet was
wasted!

router 3

router 4

router 2

router 5

router 6

sending rate
by flow 1 (Mbps)

throughput of
flow 1 & 2 (Mbps)

5

10

50 x

10)5,10min(5
5

5 ++ + xx
x

12

Summary: The Cost of Congestion

When sources sending
rate too high for the
network to handle”:
q Packet loss =>

o wasted upstream
bandwidth when a pkt is
discarded at
downstream

o wasted bandwidth due to
retransmission (a pkt
goes through a link
multiple times)

q High delay Load

Load

D
el
ay

Th
ro
ug
hp
ut

knee cliff

congestion
collapse

packet
loss

13

Outline

q Admin and recap
q TCP Reliability
q Transport congestion control

¦ what is congestion (cost of congestion)
Ø basic congestion control alg.

14

Window-based:
q Congestion control by

controlling the window
size of a sliding window,
e.g., set window size to
64KBytes

q Example: TCP

Rate-based:
q Congestion control by

explicitly controlling
the sending rate of a
flow, e.g., set sending
rate to 128Kbps

q Example: ATM

Discussion: rate-based vs. window-based

Rate-based vs. Window-based

15

Sliding Window Size Function: Rate Control

q Transmission rate determined by congestion
window size, cwnd, over segments:

q cwnd segments, each with MSS bytes sent in one
RTT:

Rate = cwnd * MSS
RTT Bytes/sec

cwnd

Assume W is small enough. Ignore small details. MSS: Maximum Segment Size
16

Window-based Congestion Control

q Window-based congestion control is self-clocking:
considers flow conservation, and adjusts to RTT
variation automatically.

q Hence, for better safety, more designs use window-
based design.17

The Desired Properties of a
Congestion Control Scheme

q Efficiency: close to full utilization but low
delay
- fast convergence after disturbance

q Fairness (resource sharing)

q Distributedness (no central knowledge for
scalability)

18

Derive CC: A Simple Model

User 1

User 2

User n

sum
xi

d =
sum xi >

Xgoal?

x1

x2

xn

Flows observe congestion signal d, and locally take
actions to adjust rates.19

Linear Control

q Proposed by Chiu and Jain (1988)
q The simplest control strategy

î
í
ì

=+
=+

=+
cong.d(t) if)(

cong. nod(t) if)(
)1(

txba
txba

tx
iDD

iII
i

Discussion: values of the parameters?

20

State Space of Two Flows

x2

x1

overload

underload

efficiency line:
x1+x2=C

fairness
line: x1=x2

î
í
ì

=+
=+

=+
cong.d(t) if)(

cong. nod(t) if)(
)1(

txba
txba

tx
iDD

iII
i

x(0)

21

x0

efficiency efficiency: distributed linear rule

x0

intersection

x0

congestion

fairness

x0

î
í
ì

=+
=+

=+
cong.d(t) if)(

cong. nod(t) if)(
)1(

txba
txba

tx
iDD

iII
i

b=1a=0

b=1

a=0

22

Implication: Congestion (overload) Case

q In order to get closer to efficiency and
fairness after each update, decreasing of
rate must be multiplicative decrease (MD)
o aD = 0
o bD < 1

î
í
ì

=
=+

=+
cong.d(t) if)(

cong. nod(t) if)(
)1(

txb
txba

tx
iD

iII
i

23

efficiency: distributed linear rule

x0

no-congestion

x0

efficiency

fairness

x0

convergence
x0

î
í
ì

=+
=+

=+
cong.d(t) if)(

cong. nod(t) if)(
)1(

txba
txba

tx
iDD

iII
i

24

Implication: No Congestion Case

q In order to get closer to efficiency and
fairness after each update, additive and
multiplicative increasing (AMI), i.e.,
o aI > 0, bI > 1

q Simply additive increase gives better
improvement in fairness (i.e., getting closer
to the fairness line)

q Multiplicative increase may grow faster

î
í
ì

=
=+

=+
cong.d(t) if)(

cong. nod(t) if)(
)1(

txb
txba

tx
iD

iII
i

25

Intuition: State Trace Analysis
of Four Special Cases

Additive
Decrease

Multiplicative
Decrease

Additive
Increase

AIAD
(bI=bD=1)

AIMD
(bI=1, aD=0)

Multiplicative
Increase

MIAD
(aI=0, bI>1, bD=1)

MIMD
(aI=aD=0)

î
í
ì

=+
=+

=+
cong.d(t) if)(

cong. nod(t) if)(
)1(

txba
txba

tx
iDD

iII
i

Discussion: state transition trace.
26

AIMD: State Transition Trace

x1

x2

x0

fairness line:
x1=x2

efficiency line:
x1+x2=C

overload

underload

27

Intuition: Another Look

q Consider the difference or ratio of the
rates of two flows
o AIAD

o difference does not change
o MIMD

o ratio does not change
o MIAD

o difference becomes bigger
o AIMD

o difference does not change

28

Outline

q Admin and recap
q TCP Reliability
q Transport congestion control

¦ what is congestion (cost of congestion)
¦ basic congestion control alg.
Ø TCP/reno congestion control

29

For more details: see TCP/IP illustrated; or read
http://lxr.linux.no/source/net/ipv4/tcp_input.c for linux implementation

TCP Congestion Control
q Closed-loop, end-to-end, window-based congestion

control
q Designed by Van Jacobson in late 1980s, based on

the AIMD alg. of Dah-Ming Chu and Raj Jain
q Worked in a large range of bandwidth values: the

bandwidth of the Internet has increased by more
than 200,000 times

q Many versions
o TCP/Tahoe: this is a less optimized version
o TCP/Reno: many OSs today implement Reno type

congestion control
o TCP/Vegas: not currently used

30

Mapping A(M)I-MD to Protocol

q Basic questions to look at:
o How to obtain d(t)--the congestion signal?
o What values do we choose for the formula?
o How to map formula to code?

î
í
ì

=
=+

=+
cong.d(t) if)(

cong. nod(t) if)(
)1(

txb
txa

tx
iD

iI
i

31

Obtain d(t) Approach 1: End Hosts
Consider Loss as Congestion

1 2 3 4 5 6
Packets

Acknowledgements (waiting seq#)

7

2 3 4 4 4 4

Assume loss
=> cong

Pros and Cons of
endhosts using loss as
congestion?

32

Obtain d(t) Approach 2: Network Feedback
(ECN: Explicit Congestion Notification)

Sender 1

Sender
2

Receiver

Network marks ECN Mark
(1 bit) on pkt according
to local condition, e.g.,
queue length > K

Receiver bounces marker
back to sender in ACK msg

Sender reduces rate if
ECN received.

Pros and Cons of ECN?

33

Mapping A(M)I-MD to Protocol

q Basic questions to look at:
o How to obtain d(t)--the congestion signal?
o What values do we choose for the formula?
o How to map formula to code?

î
í
ì

=
=+

=+
cong.d(t) if)(

cong. nod(t) if)(
)1(

txb
txa

tx
iD

iI
i

34

TCP/Reno Formulas

q Multiplicative Increase (MI)
o double the rate: x(t+1) = 2 x(t)

q Additive Increase (AI)
o Linear increase the rate: x(t+1) = x(t) + 1

q Multiplicative decrease (MD)
o half the rate: x(t+1) = 1/2 x(t)

35

TCP/Reno Formula Switching
(Control Structure)

q Two “phases”
o slow-start

• Goal: getting to equilibrium gradually but quickly, to get a
rough estimate of the optimal of cwnd

• Formula: MI
o congestion avoidance

• Goal: Maintains equilibrium and reacts around equilibrium
• Formula: AI MD

36

TCP/Reno Formula Switching
(Control Structure)
q Important variables:

o cwnd: congestion window size
o ssthresh: threshold between the slow-start phase

and the congestion avoidance phase
q If cwnd < ssthresh

o MI
q Else

o AIMD

37

MI: Slow Start

q Algorithm: MI
o double cwnd every RTT until network congested

q Goal: getting to equilibrium gradually but
quickly, to get a rough estimate of the
optimal of cwnd

38

MI: Slow-start

ACK for segment 1

segment 1cwnd = 1

cwnd = 2 segment 2
segment 3

ACK for segments 2 + 3

cwnd = 4 segment 4
segment 5
segment 6
segment 7

cwnd = 6

Initially:
cwnd = 1;
ssthresh = infinite (e.g., 64K);

For each newly ACKed segment:
if (cwnd < ssthresh)

/* MI: slow start*/
cwnd = cwnd + 1;

cwnd = 8

39

Startup Behavior with Slow-start

See [Jac89]40

AIMD: Congestion Avoidance

q Algorithm: AIMD
o increases window by 1 per round-trip time

(how?)
o cuts window size

• to half when detecting congestion by 3DUP
• to 1 if timeout
• if already timeout, doubles timeout

q Goal: Maintains equilibrium and reacts
around equilibrium

41

TCP/Reno Full Alg
Initially:

cwnd = 1;
ssthresh = infinite (e.g., 64K);

For each newly ACKed segment:
if (cwnd < ssthresh) // slow start: MI

cwnd = cwnd + 1;
else

// congestion avoidance; AI
cwnd += 1/cwnd;

Triple-duplicate ACKs:
// MD

cwnd = ssthresh = cwnd/2;
Timeout:

ssthresh = cwnd/2; // reset
cwnd = 1;

(if already timed out, double timeout value; this is called exponential backoff)

42

TCP/Reno: Big Picture

Time

cwnd

slow
start
(MI)

congestion
avoidance

(AIMD)

TD

TD: Triple duplicate acknowledgements
TO: Timeout

TO
ssthresh

ssthresh ssthresh
ssthresh

congestion
avoidance

TD

congestion
avoidance

slow
start

congestion
avoidance

TD

43

