A Taxonomy of Communication Networks

Qiao Xiang, Congming Gao

https://sngroup.org.cn/courses/cnnsxmuf23/index.shtml

09/14/2023

Outline

> Admin. and recap

- A brief introduction to the Internet:
- present
- Challenges of Internet networks and apps
- A taxonomy of communication networks

Admin.

- If you haven't filled out the survey, please go to the class website to do so

Recap

A protocol defines the format and the order of messages exchanged between two or more communicating entities, as well as the actions taken on the transmission or receipt of a message or other events.

- Key Internet milestones and their implications:
- ARPANET is sponsored by ARPA \rightarrow
design should survive failures
- The initial IMPs (routers) were made by a small company \rightarrow keep the network simple
- Many networks \rightarrow
internetworking: need a network to connect networks
- Commercialization \rightarrow

Outline

- Admin. and recaps
> A brief introduction to the Internet
- past
> present

Internet Physical Infrastructure

Residential access

- Cable, Fiber, DSL, Wireless

Access: Fiber to the x

Access: Fiber to the Premises (FTTP)

- Deployed by Verizon, AT\&T, Google,
- One of the largest comm. construction projects

FTTP Architecture

FTTP Architecture

- Optical Network Terminal (ONT) box outside dwelling or business
- Fiber Distribution Terminal (FDT) in poles or pedestals
- Fiber Distribution Hub (FDH) at street cabinet
- Optical Line Terminal (OLT) at central office

FTTP Architecture: To Home

FTTP Architecture:
 Fiber Distribution Terminal (FDT)

FTTP Architecture: Central to Fiber Distribution Hub (FDH)

- Backbone fiber ring on primary arterial streets (brown)
- Local distribution fiber plant (red) meets backbone at cabinet

Access: DSL

- Compared with FTTP, copper from cabinet (DSLAM) to home

Access: Wireless

Access: Wireless

Starlink explained: Everything you should know about Elon Musk's satellite internet venture

The billionaire Space \times CEO is launching satellites into orbit and promising to deliver high-speed broadband internet to as many users as possible.

```
Ry Crist Aug. 24, 20215:15 p.m. PT
```


Campus Network

Data Center Networks

http://www.dailymail.co.uk/sciencetech/article-3369491/Google-s-plan-world-Search-engine-build-half-billion-dollar-data-center-US.html

Data Center Networks

http://www.dailymail.co.uk/sciencetech/article-3369491/Google-s-plan-world-Search-engine-build-half-billion-dollar-data-center-US.html

Foundation of Data Center Networks

Foundation of Data Center Networks: Clos Networks

Q: How big is m so that each new call can be established w/o moving current calls?

Challenge to the class:
If you can move existing calls, it is only $\mathrm{m}>=\mathrm{n}$.

Data Center Networks: Fat-tree Networks

- K-ary fat tree: three-layer topology (edge, aggregation and core)
- k pods w/ each pod consists of (k/2) ${ }^{2}$ servers \& 2 layers of k/2k-port switches
- each edge switch connects to $\mathrm{k} / 2$ servers \& $\mathrm{k} / 2$ aggr. switches
- each aggr. switch connects to $k / 2$ edge $\& k / 2$ core switches
- $(k / 2)^{2}$ core switches: each connects to k pods

Data Center Networks

\square For example, Google Jupiter at $1 \mathrm{Pbits} / \mathrm{sec}$ bisection bw: 100,000 servers at 10G each

Datacenter Generation	First Deployed	Merchant Silicon	ToR Config	Aggregation Block Config	Spine Block Config	Fabric Speed	Host Speed	Bisection BW
Four-Post CRs	2004	vendor	48x1G	-	-	10G	1G	2T
Firehose 1.0	2005	$\begin{aligned} & 8 \times 10 \mathrm{G} \\ & 4 \times 10 \mathrm{G}(\mathrm{ToR}) \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \times 10 G \text { up } \\ 24 \times 1 G \text { down } \end{array}$	2x32x10G (B)	32x10G (NB)	10G	1G	10T
Firehose 1.1	2006	8x10G	$\begin{aligned} & 4 \times 10 \mathrm{G} \text { up } \\ & 48 \times 1 \mathrm{G} \text { down } \end{aligned}$	64x10G (B)	32x10G (NB)	10G	1G	10T
Watchtower	2008	16x10G	$\begin{aligned} & 4 \times 10 \mathrm{G} \text { up } \\ & 48 \times 1 \mathrm{G} \text { down } \end{aligned}$	4x128x10G (NB)	128x10G (NB)	10G	nx1G	82T
Saturn	2009	24x10G	24x10G	4x288x10G (NB)	288x10G (NB)	10G	nx10G	207T
Jupiter	2012	16x40G	16x40G	$8 \mathrm{x} 128 \times 40 \mathrm{G}$ (B)	128x40G (NB)	10/40G	$\begin{aligned} & \mathrm{nx} 10 \mathrm{G} / \\ & \mathrm{nx} 40 \mathrm{G} \end{aligned}$	1.3P

http://googlecloudplatform.blogspot.com/2015/06/A-Look-Inside-Googles-Data-Center-Networks.html
http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p183.pdf

Recall: Internet Physical Infrastructure

Residential access, e.g.,

- Cable, Fiber, DSL, Wireless

Yale Internet Connection

```
traceroute www.tsinghua.edu.cn
    1 college.net.yale.internal (172.28.201.65) 1.440 ms 1.227 ms 1.453 ms
    2 10.1.1.13 (10.1.1.13) 1.359 ms 1.153 ms 1.173 ms
    3 level3-10g-asr.net.yale.internal (10.1.4.40) 2.786 ms 6.110 ms 2.547 ms
    4 cen-10g-yale.net.yale.internal (10.1.3.102) 2.646 ms 3.242 ms 2.576 ms
5 ***
6 enrt064hhh-9k-te0-3-0-5.net.cen.ct.gov (67.218.83.254) 5.169 ms 3.797 ms 6.891 ms
7 198.71.46.215 (198.71.46.215) 3.615 ms 3.742 ms 3.931 ms
8 et-10-0-0.1180.rtsw.newy32aoa.net.internet2.edu (198.71.46.214) 6.661 ms 6.532 ms 6.310 ms
9 et-4-0-0.4079.sdn-sw.phil.net.internet2.edu (162.252.70.103) 8.658 ms 8.714 ms 8.666 ms
10 et-1-1-0.4079.rtsw.wash.net.internet2.edu (162.252.70.119) 11.787 ms 30.111 ms }11.900\textrm{ms
11 et-8-1-0.4079.sdn-sw.ashb.net.internet2.edu (162.252.70.62) 12.428 ms 16.654 ms 15.862 ms
12 et-7-1-0.4079.rtsw.chic.net.internet2.edu (162.252.70.61) 28.898 ms 28.999 ms 28.908 ms
13 et-3-1-0.4070.rtsw.kans.net.internet2.edu (198.71.47.207) 40.084 ms 39.958 ms 39.695 ms
14 et-8-0-0.4079.sdn-sw.denv.net.internet2.edu (162.252.70.10) 50.195 ms 50.562 ms 50.258
ms
15 et-4-1-0.4079.rtsw.salt.net.internet2.edu (162.252.70.9) 59.707 ms 60.261 ms 59.762 ms
16 et-7-0-0.4079.sdn-sw.lasv.net.internet2.edu (162.252.70.30) 67.555 ms 67.539 ms 67.312
ms
17 et-4-1-0.4079.rtsw.losa.net.internet2.edu (162.252.70.29)}72.419\textrm{ms }72.428\textrm{ms 72.376 ms
```


Internet2

Internet2

http://atlas.grnoc.iu.edu/atlas.cgi?map_name=Internet2\ IP\ Layer

XMU Internet Connection

Try traceroute from XMU to

- www.microsoft.com
- www.baidu.com
- www.sina.com.cn
- www.taobao.com

Qwest (CentryLink) Network Maps

http://www.centurylink.com/business/asset/network-map/ip-mpls-network-nm090930.pdf http://www.centurylink.com/business/resource-center/network-maps/

Level3 (now part of LUMEN) Network Map

https://www.lumen.com/en-us/resources/network-maps.html

Internet ISP Connectivity

- Roughly hierarchical
- Divided into tiers
- Tier-1 ISPs are also called backbone providers, e.g., AT\&T, Verizon, Sprint, Level 3, Qwest
- An ISP runs (private) Points of Presence (PoP) where its customers and other ISPs connect to it
- ISPs also connect at (public) Internet Exchange Point (IXP)
- public peering

Outline

- Admin. and recaps
> A brief introduction to the Internet
- past
> present
- topology
> traffic

Internet (Consumer) Traffic

Consumer Internet Trafiic, 2012-2017							
	2012	2013	2014	2015	2016	2017	$\begin{array}{r} \text { CAGR } \\ 2012-2017 \end{array}$
By Network (PB per Month)							
Fixed	25,529	32,097	39,206	47,035	56,243	66,842	21\%
Mobile	684	1,239	2,223	3,774	6,026	9,131	68\%
By Subsegment (PB per Month)							
Internet video	14,818	19,855	25,800	32,962	41,916	52,752	29\%
Web, email, and data	5,173	6,336	7,781	9,542	11,828	14,494	23\%
File sharing	6,201	7,119	7,816	8,266	8,478	8,667	7\%
Online gaming	22	26	32	39	48	59	22\%
By Geography (PB per Month)							
Asia Pacific	9,033	11,754	14,887	18,707	23,458	29,440	27\%
North America	6,834	8,924	11,312	14,188	17,740	21,764	26\%
Western Europe	5,086	5,880	6,804	7,810	9,197	10,953	17\%
Central and Eastern Europe	2,194	2,757	3,433	4,182	5,015	5,897	22\%
Latin America	2,656	3,382	4,049	4,588	5,045	5,487	16\%
Middle East and Africa	410	640	944	1,334	1,816	2,432	43\%
Total (PB per Month)							
Consumer Internet traffic	26,213	33,337	41,429	50,809	62,269	75,973	24\%

Internet Traffic in Perspective

1 Petabyte 1,000 Terabytes or 250,000 DVDs

1 Exabyte

 1,000 Petabytes or 250 million DVDs1 Zettabyte 1,000 Exabytes or 250 billion DVDs

1 Yottabyte

 1,000 Zettabytes or 250 trillion DVDs480 Terabytes
A digital library of all of the world's catalogued books in all languages

100 Petabytes
The amount of data produced in a single minute by the new particle collider at CERN

5 Exabytes
A text transcript of all words ever spoken \dagger
100 Exabytes
A video recording of all the meetings that took place last year across the world

400 Exabytes
The amount of data that crossed the Internet in 2012 alone

1 Zettabyte

The amount of data that has traversed the Internet since its creation

300 Zettabytes
The amount of visual information conveyed from the eyes to the brain of the entire human race in a single year \ddagger

20 Yottabytes
A holographic snapshot of the earth's surface

[^0]All other figures are Cisco estimates.

Outline

\square Admin. and recaps
\square A brief introduction to the Internet: past and present
> Challenges of Internet networks and apps

Scale

"Developers who have worked at the small scale might be asking themselves why we need to bother when we could just use some kind of out-of thebox solution. For small-scale applications, this can be a great idea. We save time and money up front and get a working and serviceable application. The problem comes at larger scales-there are no off-the-shelf kits that will allow you to build something like Amazon... There's a good reason why the largest applications on the Internet are all bespoke creations: no other approach can create massively scalable applications within a reasonable budget."

Largest Internet Sites in the World

1	Google.com	92.5B	THE WORLD'S Top 50 Websites United States 27
2	Youtube.com	34.6 B	
3	Facebook.com	25.5B	
4	Twitter.com	6.6B	(2m)
5	Wikipedia.org	6.1 B	
6	Instagram.com	6.1 B	-
8	Yahoo.com	3.8 B	$\rightarrow 0$
12	Whatsapp.com	3.1B	
13	Amazon.com	2.9 B	92.51
15	Zoom.us	2.7 B	
16	Live.com	2.5B	2 facebook
17	Netflix.com	2.4 B	
20	Reddit.com	1.6 B	618 34.68
21	Office.com	1.6 B	
23	Pinterest.com	1.3B	
24	Discord.com	1.2 B	
25	Linkedin.com	1.2 B	
26	Cnn.com	1.2 B	

https://www.visualcapitalist.com/wp-content/uploads/2021/01/Country-With-the-Most-Websites.html

Largest Internet Sites in the World

General Complexity

- Complexity in highly organized systems arises primarily from design strategies intended to create robustness to uncertainty in their environments and component parts.
- Scalability is robustness to changes to the size and complexity of a system as a whole.
- Evolvability is robustness of lineages to large changes on various (usually long) time scales.
- Reliability is robustness to component failures.
- Efficiency is robustness to resource scarcity.
- Modularity is robustness to component rearrangements.

Core: Simple Forwarding to Network Functions

- Modern networks contain diverse types of equipment beyond simple routing/forwarding

Enterprise networks

Small: <=1k hosts; Medium: 1k-10k; Large: 10k-100k; Very LargépueciơTkerry, et. al SIGCOMM'12]

Centralized vs Decentralized (Price of Anarchy)

- Autonomous ("Selfish") App: Assume each link has a latency function $l_{e}(x)$: latency of link e when x amount of traffic goes through e:

Autonomous ("Selfish") App

Distributed vs Centralized

- Distributed computing is hard, e.g.,
- FLP Impossibility Theorem
- Arrow's Impossibility Theorem
- Achieved good design for only few specific tasks (e.g., state distribution, leader election). Hence, a trend in networking is Software Defined Networking, which is a way of moving away from generic distributed computing, by focusing on utilizing the few well-understood primitives, in particular logically centralized state.

Recall: Internet Physical Infrastructure

Roadmap

\square So far we have looked at only the topology and physical connectivity of the Internet: a mesh of computers interconnected via various physical media

- A basic question: how are data (the bits) transferred through communication networks?

Outline

\square Admin. and recaps
\square A brief introduction to the Internet: past and present

- Challenges of Internet networks and apps
> A taxonomy of communication networks

Taxonomy of Communication Networks

- Broadcast networks
- nodes share a common channel; information transmitted by a node is received by all other nodes in the network
- examples: TV, radio
- Switched networks
- information is transmitted to a small sub-set (usually only one) of the nodes

A Taxonomy of Switched Networks

- Circuit switching: dedicated circuit per call/session:
- e.g., telephone, cellular voice
- Packet switching: data sent thru network in discrete "chunks"
- e.g., Internet, cellular data

Outline

\square Admin. and recaps
\square A brief introduction to the Internet: past and present

- Challenges of Internet networks and apps
> A taxonomy of communication networks
> circuit switched networks

Circuit Switching

- Each link has a number of "circuits"
- sometime we refer to a "circuit" as a channel or a line
 one "circuit" at each link

First commercial telephone switchboard was opened in 1878 to serve the 21 telephone customers in New Haven

Circuit Switching: Resources/Circuits (Frequency, Time and others)

- Divide link resource into "circuits"
- frequency division multiplexing (FDM)

- time division multiplexing (TDM)
- others such as code division multiplexing (CDM), color/lambda

TDM

Time Key: division

Circuit Switching: The Process

- Three phases
- circuit establishment
- data transfer
- circuit termination

Timing Diagram of Circuit Switching

Host A
Node 1
Node 2
Host B

[^0]: † Roy Williams, "Data Powers of Ten," 2000
 ₹ Based on a 2006 estimate by the University of Pennsytvania School of Medicine that the retina transmits information to the brain at 10 Mbps .

