
Network Layer:
Distance Vector Protocols Variations

Link-State Protocol

Qiao Xiang, Congming Gao

https://sngroup.org.cn/courses/cnns-
xmuf23/index.shtml

12/05/2023

This deck of slides are heavily based on CPSC 433/533 at Yale University, by courtesy of Dr. Y. Richard Yang.

2

Outline

q Admin and recap
q Network overview
q Network control plane

o Routing
o Link weights assignment
o Routing computation

o Distance vector protocols (distributed computing)
o Link state protocols (distributed state

synchronization)

3

Recap: Routing Context

Often depends on a graph
abstraction:

q graph nodes are routers
q graph edges are physical

links
o links have properties:

delay, capacity, $ cost,
policy

Goal: determine “good” paths
(sequences of routers) thru

networks from source to dest.

Routing

A

ED

CB

F
2

2
1 3

1

1
2

5
3

5

4

Recap: Routing Design Space
q Routing has a large design space

o who decides routing?
• source routing: end hosts make decision
• network routing: networks make decision

o how many paths from source s to destination d?
• multi-path routing
• single path routing

o what does routing compute?
• network cost minimization (shortest path routing)
• QoS aware

o will routing adapt to network
traffic demand?

• adaptive routing
• static routing

o …

A

ED

CB

F
2

2
1 3

1

1
2

5
3

5

5

Recap: Distance Vector Routing:
Basic Idea (Bellman-Ford Alg)
q At node i, the basic update rule

where
- di denotes the distance

estimation from i to the
destination,

- N(i) is set of neighbors of
node i, and

- dij is the distance of
the direct link from i to j

)(min)(jijiNji ddd += Î

i

j
id

jd
ijd

destination

7

Recap: Synchronous Bellman-Ford (SBF)

q Nodes update in rounds:
o there is a global clock;
o at the beginning of each round, each node sends

its estimate to all of its neighbors;
o at the end of the round, updates its estimation

))((min)1()(hddhd jijiNji +=+ Î

A

B

E

C
D

8

Recap: SBF/∞

q Initialization (time 0):

î
í
ì
¥

=
=

otherwise
desti0

)0(id

A

E D

CB7

8
10

2

1

2

9

Example A

E D

CB7

8
10

2

1

2

A B C E D
d(0) ∞ ∞ ∞ ∞ 0

Consider D as destination; d(t) is a vector consisting of
estimation of each node at round t

d(1) ∞ ∞ 2 2 0

d(2) 12 3 2 2 0

d(3) 10 3 2 2 0

d(4) 10 3 2 2 0

Observation: d(0) ≥ d(1) ≥ d(2) ≥ d(3) ≥ d(4) =d*

))((min)1()(hddhd jijiNji +=+ Î

10

A Nice Property of SBF: Monotonicity

q Consider two configurations d(t) and d’(t)

q If d(t) ≥ d’(t)
o i.e., each node has a higher estimate in one

scenario (d) than in another scenario (d’),

q then d(t+1) ≥ d’(t+1)
o i.e., each node has a higher estimate in d than in d’

after one round of synchronous update.

))((min)1()(hddhd jijiNji +=+ Î

11

Correctness of SBF/∞
q Claim: di(h) is the length Li(h) of a

shortest path from i to the destination
using ≤ h hops

o base case: h = 0 is trivially true

o assume true for ≤ h,
i.e., Li(h)= di(h), Li(h-1)= di(h-1), …

))((min)1()(hddhd jijiNji +=+ Î

12

Correctness of SBF/∞
q consider ≤ h+1 hops:

))((min)1()(hddhd jijiNji +=+ Î

=+)1(hLi

))1(),(min(+= hdhd ii

)))((min),(min()(hddhd jijiNji += Î

)))((min),(min()(hLdhL jijiNji +Î

)1()1(+=+ hdhL ii

since di(h) ≤ di(h-1)
)())1((min))((min)1()()(hdhddhddhd ijijiNjjijiNji =-+£+=+ ÎÎ

13

Outline

q Admin and recap
q Network overview
q Network control plane

o Routing
o Link weights assignment
o Routing computation

Ø Distributed distance vector protocols
Ø synchronous Bellman-Ford (SBF)

• SBF/∞
• SBF/-1 SBF/∞

14

SBF at another
Initial Configuration: SBF/-1

q Initialization (time 0):

A

E D

CB7

8
10

2

1

2

î
í
ì
-

=
=

otherwise1
desti0

)0(id

15

Example A

E D

CB7
8

10
2

1

2

A B C E D
d(0) -1 -1 -1 -1 0

Consider D as destination

d(1) 6 0 0 2 0

d(2) 7 1 1 2 0

d(3) 8 2 2 2 0

d(4) 9 3 3 2 0

d(5) 10 3 3 2 0

Observation: d(0) ≤ d(1) ≤ d(2) ≤ d(3) ≤ d(4) ≤ d(5) = d(6) = d*

d(6) 10 3 3 2 0

))((min)1()(hddhd jijiNji +=+ Î

16

Correctness of SBF/-1

qSBF/-1 converges due to
monotonicity

qRemaining question:
o Can we guarantee that SBF/-1

converges to shortest path?

17

Correctness of SBF/-1
q Common between SBF/∞ and SBF/-1: they

solve the Bellman equation

where dD = 0.

q We have proven SBF/∞ is the shortest path
solution.

q SBF/-1 computes shortest path if Bellman
equation has a unique solution.

)(min)(jijiNji ddd += Î

18

Uniqueness of Solution to BE

q Assume another solution d, we will show that
d = d*

case 1: we show d ≥ d*

Since d is a solution to BE, we can construct
paths as follows: for each i, pick a j which
satisfies the equation; since d* is shortest, d ≥ d*

A

E D

CB7

8
10

2

1

2

2

2

3

10

)(min)(jijiNji ddd += Î

19

Uniqueness of Solution to BE

Case 2: we show d ≤ d*

assume we run SBF with two initial
configurations:
o one is d
o another is SBF/∞ (d∞),

-> monotonicity and convergence of SBF/∞ imply
that d ≤ d*

)(min)(jijiNji ddd += Î

20

Discussion

q Will SBF converge under other
non-negative initial conditions?

q Problems of running
synchronous BF?

21

Outline

q Admin and recap
q Network overview
q Network control plane

o Routing
o Link weights assignment
o Routing computation

Ø Distributed distance vector protocols
• synchronous Bellman-Ford (SBF)
Ø asynchronous Bellman-Ford (ABF)

Asynchronous Bellman-Ford (ABF)

q No notion of global iterations
o each node updates at its own pace

q Asynchronously each node i computes

using last received value di
j from neighbor j.

q Asynchronously node j sends its estimate to
its neighbor i:
o We assume that there is an upper bound on the

delay of estimate packet

)(min)(
i
jijiNji ddd += Î

22

ABF: Example
A

E D

CB
7

8
10

2

1

2

d ()

A

B

C

D

E

distance tables
from neighbors

de
st

in
at

io
ns

computation E’s
distance

table
distance

table E sends
to its neighbors

A: 10

B: 8

C: 4

D: 2

E: 0

Below is just one step! The protocol repeats forever!

10 15 ∞

A B D

0 7 ∞

A B D

10 8 2

7 0 ∞

∞ 1 2

∞ ∞ 0

A: 10

B: 8

D: 4

D: 2

17 8 ∞

∞ 9 4

∞ ∞ 2

23

Asynchronous Bellman-Ford (ABF)

qABF will eventually converge to the
shortest path
o links can go down and come up – but

if topology is stabilized after some
time t and connected, ABF will
eventually converge to the shortest
path !

24

ABF Convergence Proof Complexity:
Complex System State

i

j

What is system state?
25

System State

di

dj

di
j di

j

three types of
distance state
from node j:

- dj: current
distance estimate
state at node j

- di
j: last dj that

neighbor i received

- di
j: those dj that

are still in transit
to neighbor i

26

ABF Convergence Proof:
The Sandwich Technique

qBasic idea:
o bound system state using extreme

states
qExtreme states:

o SBF/∞; call the sequence U()
o SBF/-1; call the sequence L()

27

ABF Convergence

q Consider the time when the topology is
stabilized as time 0

q U(0) and L(0) provide upper and lower bounds
at time 0 on all corresponding elements of
states
o Lj (0) ≤ dj ≤ Uj (0) for all dj state at node j
o Lj (0) ≤ di

j ≤ Uj (0)
o Lj (0) ≤ update messages di

j ≤ Uj (0)

28

ABF Convergence

q dj
o after at least one

update at node j:
dj falls between
Lj (1) ≤ dj ≤ Uj (1)

q di
j :

o eventually all di
j that

are only bounded by
Lj (0) and Uj (0) are
replaced with in
Lj(1) and Uj(1)

di

dj

di
j di

j

29

Asynchronous Bellman-Ford: Summary

qDistributed
o each node communicates its routing table to its

directly-attached neighbors
qIterative

o continues periodically or when link changes, e.g.
detects a link failure

qAsynchronous
o nodes need not exchange info/iterate in lock

step!
qConvergence

o in finite steps, independent of initial condition if
network is connected

30

31

Summary: Distributed Distance-Vector

q Tool box: a key technique for proving
convergence (liveness) of distributed
protocols: monotonicity and bounding-box
(sandwich) design
o Consider two configurations d(t) and d’(t):

• if d(t) <= d’(t), then d(t+1) <= d’(t+1)
o Identify two extreme configurations to sandwich

any real configurations

32

Outline

q Admin and recap
q Network control plane

o Routing
o Link weights assignment
o Routing computation

o Distance vector protocols (distributed computing)
o synchronous Bellman-Ford (SBF)
o asynchronous Bellman-Ford (ABF)
Ø properties of DV

Properties of Distance-Vector Algorithms

q Good news propagate fast

Properties of Distance-Vector Algorithms

q Bad news propagate slowly

q This is called the counting-to-infinity problem
q Q: what causes counting-to-infinity?

A-B link down

Counting-To-Infinity is Because of Routing Loop

q Counting-to-infinity is
caused by a routing
loop, which is a global
state (consisting of the
nodes’ local states) at a
global moment
(observed by an oracle)
such that there exist
nodes A, B, C, … E such
that A (locally) thinks
B as next hop, B thinks
C as next hop, … E
thinks A as next hop

35

Discussion

q Why avoid routing loops is hard?

q Any proposals to avoid routing loops?

36

37

Outline
q Admin and recap
q Network control plane

o Routing
o Link weights assignment
o Routing computation

o Distance vector protocols (distributed computing)
o synchronous Bellman-Ford (SBF)
o asynchronous Bellman-Ford (ABF)
o properties of DV

o DV w/ loop prevention
Ø reverse poison

The Reverse-Poison
(Split-horizon) Hack A

E D

CB
7

8
1

2

1

2

d ()

A

B

C

D

A

0

7

∞

∞

1
c(E,A)

B

7

0

1

∞

8
c(E,B)

D

∞

∞

2

0

2
c(E,D)

E

distance tables
from neighbors

de
st

in
at

io
ns

A

1

8

∞

∞

B

15

8

9

∞

D

∞

∞

4

2

computation E’s
distance

table

1, A

8, B

4, D

2, D

distance
table E sends
to its neighbors

distance through
neighbor

To A

A: ∞

B: 8

C: 4

D: 2

E: 0

To B

A: 1

B: ∞

C: 4

D: 2

E: 0

To D

A: 1

B: 8

C: ∞

D: ∞

E: 0

If the path to dest is through neighbor h, report
∞ to neighbor h for dest.

38

DV+RP => RIP
(Routing Information Protocol)

q Included in BSD-UNIX
Distribution in 1982

q Link cost: 1
q Distance metric: # of

hops
q Distance vectors

o exchanged every 30 sec via Response Message (also called
advertisement) using UDP

o each advertisement: route to up to 25 destination nets

39

RIP: Link Failure and Recovery
If no advertisement heard after 180 sec -->

neighbor/link declared dead
o routes via neighbor invalidated

o new advertisements sent to neighbors

o neighbors in turn send out new advertisements
(if tables changed)

o link failure info quickly propagates to entire net

o reverse-poison used to prevent ping-pong loops

o set infinite distance = 16 hops (why?) 40

General Routing Loops and Reverse-poison

41

q Exercise: Can Reverse-poison guarantee no loop for this
network?

General Routing Loops and Reverse-poison

q Reverse-poison removes two-node loops but
may not remove more-node loops

42

I can reach

D w/ cost 3

q Unfortunate timing can lead to a loop
• When the link between C and D fails, C will set its distance

to D as ∞
• A receives the bad news (∞) from C, A will use B to go to D
• A sends the news to C
• C sends the news to B

