<u>Network Layer:</u> Distance Vector Protocols Variations Link-State Protocol

Qiao Xiang, Congming Gao

https://sngroup.org.cn/courses/cnnsxmuf23/index.shtml

12/05/2023

This deck of slides are heavily based on CPSC 433/533 at Yale University, by courtesy of Dr. Y. Richard Yang.

- Admin and recap
- Network overview
- Network control plane
 - Routing
 - Link weights assignment
 - Routing computation
 - Distance vector protocols (distributed computing)
 - Link state protocols (distributed state synchronization)

Recap: Routing Context

Routing

Goal: determine "good" paths (sequences of routers) thru networks from source to dest.

- Often depends on a graph abstraction:
- graph nodes are routers
- graph edges are physical links
 - links have properties: delay, capacity, \$ cost, policy

Recap: Routing Design Space

Routing has a large design space

- who decides routing?
 - source routing: end hosts make decision
 - network routing: networks make decision
- o how many paths from source s to destination d?
 - multi-path routing
 - single path routing
- what does routing compute?
 - network cost minimization (shortest path routing)
 - QoS aware
- will routing adapt to network traffic demand?
 - adaptive routing
 - static routing

<u>Recap: Distance Vector Routing:</u> <u>Basic Idea (Bellman-Ford Alg)</u>

□ At node i, the basic update rule

$$d_i = \min_{j \in N(i)} (d_{ij} + d_j)$$

where

- d_i denotes the distance estimation from i to the destination,
- N(i) is set of neighbors of node i, and
- d_{ij} is the distance of the direct link from i to j

Recap: Synchronous Bellman-Ford (SBF)

Nodes update in rounds:

- there is a global clock;
- at the beginning of each round, each node sends its estimate to all of its neighbors;
- o at the end of the round, updates its estimation

□ Initialization (time 0):

$$d_i(0) = \begin{cases} 0 & i = \text{dest} \\ \infty & \text{otherwise} \end{cases}$$

 $d_i(h+1) = \min_{j \in N(i)} (d_{ij} + d_j(h))$

Example

 $\frac{1}{7} + \frac{1}{8} + \frac{1}{2}$

Consider D as destination; d(t) is a vector consisting of estimation of each node at round t

	Α	В	С	E	D	
d(0)	∞	∞	∞	∞	0	
d(1)	∞	∞	2	2	0	
d(2)	12	3	2	2	0	
d(3)	10	3	2	2	0	
d(4)	10	3	2	2	0	

Observation: $d(0) \ge d(1) \ge d(2) \ge d(3) \ge d(4) = d^*$

 $d_i(h+1) = \min_{j \in N(i)} (d_{ij} + d_j(h))$

A Nice Property of SBF: Monotonicity

Consider two configurations d(t) and d'(t)

$\Box \text{ If } d(t) \geq d'(t)$

 i.e., each node has a higher estimate in one scenario (d) than in another scenario (d'),

$\Box \text{ then } d(t+1) \geq d'(t+1)$

 i.e., each node has a higher estimate in d than in d' after one round of synchronous update.

 $|d_i(h+1) = \min_{i \in N(i)} (d_{ii} + d_i(h))$

<u>Correctness of SBF/ ∞ </u>

□ Claim: d_i (h) is the length L_i (h) of a shortest path from i to the destination using \leq h hops

base case: h = 0 is trivially true

• assume true for $\leq h$, i.e., $L_i(h) = d_i(h)$, $L_i(h-1) = d_i(h-1)$, ...

 $|d_i(h+1) = \min_{i \in N(i)} (d_{ij} + d_j(h))|$

<u>Correctness of SBF/ ∞ </u>

 \Box consider \leq h+1 hops: $L_{i}(h+1) = \min(L_{i}(h), \min_{j \in N(i)}(d_{ij} + L_{j}(h)))$ $= \min(d_i(h), \min_{i \in N(i)}(d_{ii} + d_i(h)))$ $= \min(d_i(h), d_i(h+1))$ since $d_i(h) \leq d_i(h-1)$ $|d_i(h+1) = \min_{i \in N(i)} (d_{ii} + d_i(h)) \le \min_{i \in N(i)} (d_{ii} + d_i(h-1)) = d_i(h)|$

 $L_i(h+1) = d_i(h+1)$

- Admin and recap
- Network overview
- Network control plane
 - Routing
 - Link weights assignment
 - Routing computation
 - > Distributed distance vector protocols
 - synchronous Bellman-Ford (SBF)
 - SBF/∞
 - SBF/-1 SBF/∞

□ Initialization (time 0):

$$d_i(0) = \begin{cases} 0 & i = \text{dest} \\ -1 & \text{otherwise} \end{cases}$$

<u>Exan</u>	$\begin{array}{c c} B & 1 \\ \hline \\ B & 2 \\ \hline \end{array}$					
Consider	10					
	А	В	С	E	D	_
d(0)	-1	-1	-1	-1	0	
d(1)	6	0	0	2	0	
d(2)	7	1	1	2	0	
d(3)	8	2	2	2	0	
d(4)	9	3	3	2	0	
d(5)	10	3	3	2	0	
d(6)	10	3	3	2	0	

Observation: $d(0) \le d(1) \le d(2) \le d(3) \le d(4) \le d(5) = d(6) = d^*$

Correctness of SBF/-1

SBF/-1 converges due to monotonicity

Remaining question:

 Can we guarantee that SBF/-1 converges to shortest path?

<u>Correctness of SBF/-1</u>

□ Common between SBF/∞ and SBF/-1: they solve the Bellman equation $d_i = \min_{j \in N(i)} (d_{ij} + d_j)$ where d_D = 0.

- We have proven SBF/∞ is the shortest path solution.
- SBF/-1 computes shortest path if Bellman equation has a unique solution.

$$d_i = \min_{j \in N(i)} (d_{ij} + d_j)$$

Uniqueness of Solution to BE

Assume another solution d, we will show that d = d*

case 1: we show $d \ge d^*$

Since d is a solution to BE, we can construct paths as follows: for each i, pick a j which satisfies the equation; since d* is shortest, $d \ge d^*$

 $d_i = \min_{j \in N(i)} (d_{ij} + d_j)$

Uniqueness of Solution to BE

Case 2: we show $d \leq d^*$

assume we run SBF with two initial configurations:

- o one is d
- another is SBF/ ∞ (d $^{\infty}$),
- -> monotonicity and convergence of SBF/∞ imply that d ≤ d*

Will SBF converge under other non-negative initial conditions?

Problems of running synchronous BF?

- Admin and recap
- Network overview
- Network control plane
 - Routing
 - Link weights assignment
 - Routing computation
 - Distributed distance vector protocols
 - synchronous Bellman-Ford (SBF)
 - asynchronous Bellman-Ford (ABF)

Asynchronous Bellman-Ford (ABF)

No notion of global iterations
 each node updates at its own pace
 Asynchronously each node i computes

$$d_i = \min_{j \in N(i)} (d_{ij} + d_j^i)$$

using last received value d_{j}^{i} from neighbor j.

- Asynchronously node j sends its estimate to its neighbor i:
 - We assume that there is an upper bound on the delay of estimate packet

<u>ABF: Example</u>									T A	B	1	2	
Below is just one step! The protocol repeats forever! 10													
distance tables from neighbors			computation		E's distance	s nce	distance						
d _E (()	Α	В	D	A	В	D	table		table E sends to its neighbors			
1	A	0	7	∞	10	15	∞	A:	10		A: 10)	
tions	В	7	0	∞	17	8	∞	B: 8	8		B: 8		
destina	С	∞	1	2	∞	9	4	D:	4		C: 4		
[D	∞	∞	0	∞	∞	2	D:	2		D: 2		
destinations	A B C	0 7 ∞	7 0 1 ∞	∞ ∞ 2 0	1017∞	15 8 9 ∞	∞ 4 2	A: B: 8 D: D:	10 8 4 2		A: 10 B: 8 C: 4 D: 2)	

10 8 2

E: 0

Asynchronous Bellman-Ford (ABF)

ABF will eventually converge to the shortest path

 links can go down and come up - but if topology is stabilized after some time t and connected, ABF will eventually converge to the shortest path !

<u>ABF Convergence Proof Complexity:</u> <u>Complex System State</u>

three types of distance state from node j:

- d_j: current distance estimate state at node j
- dⁱj: last d_j that neighbor i received
- dⁱ_j: those d_j that are still in transit to neighbor i

<u>ABF Convergence Proof:</u> The Sandwich Technique

Basic idea:

 bound system state using extreme states

Extreme states:

SBF/∞; call the sequence U()
SBF/-1; call the sequence L()

Consider the time when the topology is stabilized as time 0

- U(0) and L(0) provide upper and lower bounds at time 0 on all corresponding elements of states
 - L_j (0) ≤ d_j ≤ U_j (0) for all d_j state at node j
 - $\circ \ L_{j} \ (0) \leq \ d^{i}_{j} \leq \mathsf{U}_{j} \ (0)$
 - ∘ L_j (0) ≤ update messages $d^i_j ≤ U_j$ (0)

ABF Convergence

□ d_j
 o after at least one update at node j:
 d_j falls between
 L_i (1) ≤ d_i ≤ U_i (1)

dⁱ_j:
 eventually all dⁱ_j that are only bounded by L_j (0) and U_j (0) are replaced with in L_j(1) and U_j(1)

Asynchronous Bellman-Ford: Summary

Distributed

 each node communicates its routing table to its directly-attached neighbors

Iterative

 continues periodically or when link changes, e.g. detects a link failure

Asynchronous

 nodes need not exchange info/iterate in lock step!

Convergence

 in finite steps, independent of initial condition if network is connected

<u>Summary: Distributed Distance-Vector</u>

Tool box: a key technique for proving convergence (liveness) of distributed protocols: monotonicity and bounding-box (sandwich) design

• Consider two configurations d(t) and d'(t):

if d(t) <= d'(t), then d(t+1) <= d'(t+1)

 Identify two extreme configurations to sandwich any real configurations

- Admin and recap
- Network control plane
 - Routing
 - Link weights assignment
 - Routing computation
 - Distance vector protocols (distributed computing)
 - synchronous Bellman-Ford (SBF)
 - asynchronous Bellman-Ford (ABF)
 - > properties of DV

<u>Properties of Distance-Vector Algorithms</u>

Good news propagate fast

Properties of Distance-Vector Algorithms

This is called the *counting-to-infinity* problem
 Q: what causes counting-to-infinity?

Counting-To-Infinity is Because of Routing Loop

Counting-to-infinity is caused by a routing loop, which is a global state (consisting of the nodes' local states) at a global moment (observed by an oracle) such that there exist nodes A, B, C, ... E such that A (locally) thinks B as next hop, B thinks C as next hop, ... E thinks A as next hop

U Why avoid routing loops is hard?

Any proposals to avoid routing loops?

- Admin and recap
- Network control plane
 - Routing
 - Link weights assignment
 - Routing computation
 - Distance vector protocols (distributed computing)
 - synchronous Bellman-Ford (SBF)
 - asynchronous Bellman-Ford (ABF)
 - properties of DV
 - DV w/ loop prevention
 - reverse poison

<u>DV+RP => RIP</u> (Routing Information Protocol)

- Included in BSD-UNIX Distribution in 1982
- Link cost: 1
- Distance metric: # of hops
- Distance vectors

- exchanged every 30 sec via Response Message (also called advertisement) using UDP
- each advertisement: route to up to 25 destination nets

RIP: Link Failure and Recovery

If no advertisement heard after 180 sec --> neighbor/link declared dead

- routes via neighbor invalidated
- new advertisements sent to neighbors
- neighbors in turn send out new advertisements (if tables changed)
- link failure info quickly propagates to entire net
- reverse-poison used to prevent ping-pong loops
- o set infinite distance = 16 hops (why?)

General Routing Loops and Reverse-poison

Exercise: Can Reverse-poison guarantee no loop for this network?

General Routing Loops and Reverse-poison

Reverse-poison removes two-node loops but may not remove more-node loops

- Unfortunate timing can lead to a loop
 - When the link between C and D fails, C will set its distance to D as ∞
 - A receives the bad news (∞) from C, A will use B to go to D
 - A sends the news to C
 - C sends the news to B