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Outline

q Admin and recap
q Network overview
q Network control plane

o Routing
o Link weights assignment
o Routing computation

o Distance vector protocols (distributed computing)
o Link state protocols (distributed state 

synchronization)
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Recap: Routing Context

Often depends on a graph 
abstraction:

q graph nodes are routers
q graph edges are physical 

links
o links have properties: 

delay, capacity, $ cost, 
policy

Goal: determine “good” paths
(sequences of routers) thru 

networks from source to dest.
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Recap: Routing Design Space
q Routing has a large design space

o who decides routing?
• source routing: end hosts make decision
• network routing: networks make decision

o how many paths from source s to destination d?
• multi-path routing 
• single path routing

o what does routing compute?
• network cost minimization (shortest path routing)
• QoS aware

o will routing adapt to network 
traffic demand?

• adaptive routing
• static routing

o …
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Recap: Distance Vector Routing: 
Basic Idea (Bellman-Ford Alg)
q At node i, the basic update rule

where 
- di denotes the distance 

estimation from i to the 
destination, 

- N(i) is set of neighbors of 
node i, and 

- dij is the distance of 
the direct link from i to j
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Recap: Synchronous Bellman-Ford (SBF)

q Nodes update in rounds:
o there is a global clock; 
o at the beginning of each round, each node sends 

its estimate to all of its neighbors; 
o at the end of the round, updates its estimation

))((min)1( )( hddhd jijiNji +=+ Î
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Recap: SBF/∞

q Initialization (time 0): 
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Example A

E D

CB7

8
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2

1
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A          B            C            E           D
d(0) ∞ ∞ ∞ ∞ 0

Consider D as destination; d(t) is a vector consisting of 
estimation of each node at round t

d(1) ∞ ∞ 2             2           0

d(2) 12 3 2             2           0

d(3) 10 3 2             2           0

d(4) 10 3 2             2           0

Observation: d(0) ≥ d(1) ≥ d(2) ≥ d(3) ≥ d(4) =d* 

))((min)1( )( hddhd jijiNji +=+ Î
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A Nice Property of SBF: Monotonicity

q Consider two configurations d(t) and d’(t)

q If d(t) ≥ d’(t) 
o i.e., each node has a higher estimate in one 

scenario (d) than in another scenario (d’), 

q then d(t+1) ≥ d’(t+1) 
o i.e., each node has a higher estimate in d than in d’ 

after one round of synchronous update.

))((min)1( )( hddhd jijiNji +=+ Î
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Correctness of SBF/∞
q Claim: di(h) is the length Li(h) of a 

shortest path from i to the destination 
using  ≤ h hops

o base case: h = 0 is trivially true

o assume true for ≤ h, 
i.e., Li(h)= di(h), Li(h-1)= di(h-1), …

))((min)1( )( hddhd jijiNji +=+ Î
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Correctness of SBF/∞
q consider ≤ h+1 hops:

))((min)1( )( hddhd jijiNji +=+ Î

=+ )1(hLi
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)))((min),(min( )( hddhd jijiNji += Î

)))((min),(min( )( hLdhL jijiNji +Î

)1()1( +=+ hdhL ii

since di(h) ≤ di(h-1)
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Outline

q Admin and recap
q Network overview
q Network control plane

o Routing
o Link weights assignment
o Routing computation

Ø Distributed distance vector protocols
Ø synchronous Bellman-Ford (SBF)

• SBF/∞
• SBF/-1 SBF/∞
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SBF at another 
Initial Configuration: SBF/-1

q Initialization (time 0): 
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Example A

E D

CB7
8

10
2

1
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A          B            C            E           D
d(0) -1 -1 -1 -1           0

Consider D as destination

d(1) 6 0 0 2           0

d(2) 7 1 1 2           0

d(3) 8 2 2 2           0

d(4) 9 3 3 2           0

d(5) 10 3 3 2           0

Observation: d(0) ≤ d(1) ≤ d(2) ≤ d(3) ≤ d(4) ≤ d(5) = d(6) = d* 

d(6) 10 3 3 2           0

))((min)1( )( hddhd jijiNji +=+ Î
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Correctness of SBF/-1

qSBF/-1 converges due to 
monotonicity

qRemaining question: 
o Can we guarantee that SBF/-1 

converges to shortest path?
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Correctness of SBF/-1
q Common between SBF/∞ and SBF/-1: they 

solve the Bellman equation

where dD = 0.

q We have proven SBF/∞ is the shortest path 
solution. 

q SBF/-1 computes shortest path if Bellman 
equation has a unique solution.

)(min )( jijiNji ddd += Î
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Uniqueness of Solution to BE

q Assume another solution d, we will show that 
d = d* 

case 1: we show d ≥ d*

Since d is a solution to BE,  we can construct 
paths as follows: for each i, pick a j which 
satisfies the equation; since d* is shortest, d ≥ d* 
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Uniqueness of Solution to BE

Case 2: we show d ≤ d*

assume we run SBF with two initial 
configurations:
o one is d
o another is SBF/∞ (d∞), 

-> monotonicity and convergence of SBF/∞ imply 
that d ≤ d*

)(min )( jijiNji ddd += Î
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Discussion

q Will SBF converge under other 
non-negative initial conditions?

q Problems of running 
synchronous BF?
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Outline

q Admin and recap
q Network overview
q Network control plane

o Routing
o Link weights assignment
o Routing computation

Ø Distributed distance vector protocols
• synchronous Bellman-Ford (SBF)
Ø asynchronous Bellman-Ford (ABF)



Asynchronous Bellman-Ford (ABF)

q No notion of global iterations
o each node updates at its own pace

q Asynchronously each node i computes

using last received value  di
j from neighbor j.

q Asynchronously node j sends its estimate to 
its neighbor i:
o We assume that there is an upper bound on the 

delay of estimate packet

)(min )(
i
jijiNji ddd += Î
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ABF: Example
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computation E’s
distance 

table
distance 

table E sends 
to its neighbors

A: 10

B: 8

C: 4

D: 2

E: 0

Below is just one step! The protocol repeats forever!

10   15   ∞

A    B     D

0    7    ∞

A    B    D

10   8   2

7    0 ∞

∞ 1    2

∞ ∞ 0

A: 10

B: 8

D: 4

D: 2

17   8    ∞

∞ 9    4

∞ ∞ 2
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Asynchronous Bellman-Ford (ABF)

qABF will eventually converge to the 
shortest path
o links can go down and come up – but 

if topology is stabilized after some 
time t and connected, ABF will 
eventually converge to the shortest 
path !

24



ABF Convergence Proof Complexity: 
Complex System State

i

j

What is system state?
25



System State

di

dj

di
j di

j

three types of 
distance state 
from node j: 

- dj: current 
distance estimate 
state at node j

- di
j: last dj that 

neighbor i received

- di
j: those dj that 

are still in transit 
to neighbor i

26



ABF Convergence Proof: 
The Sandwich Technique

qBasic idea: 
o bound system state using extreme 

states
qExtreme states:

o SBF/∞; call the sequence U()
o SBF/-1; call the sequence L()

27



ABF Convergence

q Consider the time when the topology is 
stabilized as time 0

q U(0) and L(0) provide upper and lower bounds 
at time 0 on all corresponding elements of 
states
o Lj (0) ≤ dj ≤ Uj (0) for all dj state at node j 
o Lj (0) ≤ di

j ≤ Uj (0) 
o Lj (0) ≤ update messages di

j ≤ Uj (0)

28



ABF Convergence

q dj
o after at least one 

update at node j: 
dj falls between 
Lj (1) ≤ dj ≤ Uj (1)

q di
j : 

o eventually all di
j that 

are only bounded by 
Lj (0) and Uj (0) are 
replaced with in
Lj(1) and Uj(1)

di

dj

di
j di

j
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Asynchronous Bellman-Ford: Summary

qDistributed
o each node communicates its routing table to its 

directly-attached neighbors
qIterative

o continues periodically or when link changes, e.g. 
detects a link failure

qAsynchronous
o nodes need not exchange info/iterate in lock 

step!
qConvergence 

o in finite steps, independent of initial condition if
network is connected

30
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Summary: Distributed Distance-Vector

q Tool box: a key technique for proving 
convergence (liveness) of distributed 
protocols: monotonicity and bounding-box
(sandwich) design
o Consider two configurations d(t) and d’(t):

• if d(t) <= d’(t), then d(t+1) <= d’(t+1) 
o Identify two extreme configurations to sandwich 

any real configurations
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Outline

q Admin and recap
q Network control plane

o Routing
o Link weights assignment
o Routing computation

o Distance vector protocols (distributed computing)
o synchronous Bellman-Ford (SBF)
o asynchronous Bellman-Ford (ABF)
Ø properties of DV



Properties of Distance-Vector Algorithms

q Good news propagate fast



Properties of Distance-Vector Algorithms

q Bad news propagate slowly

q This is called the counting-to-infinity problem
q Q: what causes counting-to-infinity?

A-B link down



Counting-To-Infinity is Because of Routing Loop

q Counting-to-infinity is 
caused by a routing 
loop, which is a global 
state (consisting of the 
nodes’ local states) at a 
global moment 
(observed by an oracle) 
such that there exist 
nodes A, B, C, … E such 
that A (locally) thinks 
B as next hop, B thinks 
C as next hop, … E 
thinks A as next hop

35



Discussion

q Why avoid routing loops is hard?

q Any proposals to avoid routing loops?

36
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Outline
q Admin and recap
q Network control plane

o Routing
o Link weights assignment
o Routing computation

o Distance vector protocols (distributed computing)
o synchronous Bellman-Ford (SBF)
o asynchronous Bellman-Ford (ABF)
o properties of DV

o DV w/ loop prevention
Ø reverse poison



The Reverse-Poison 
(Split-horizon) Hack A
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∞

∞
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D

∞
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computation E’s
distance 

table

1, A

8, B

4, D

2, D

distance 
table E sends 
to its neighbors

distance through 
neighbor

To A

A: ∞

B: 8

C: 4

D: 2

E: 0

To B

A: 1

B: ∞

C: 4

D: 2

E: 0

To D

A: 1

B: 8

C: ∞

D: ∞

E: 0

If the path to dest is through neighbor h, report 
∞ to neighbor h for dest.
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DV+RP => RIP 
( Routing Information Protocol)

q Included in BSD-UNIX 
Distribution in 1982

q Link cost: 1
q Distance metric: # of 

hops 
q Distance vectors

o exchanged every 30 sec via Response Message (also called 
advertisement) using UDP

o each advertisement: route to up to 25 destination nets

39



RIP: Link Failure and Recovery
If no advertisement heard after 180 sec --> 

neighbor/link declared dead
o routes via neighbor invalidated

o new advertisements sent to neighbors

o neighbors in turn send out new advertisements 
(if tables changed)

o link failure info quickly propagates to entire net

o reverse-poison used to prevent ping-pong loops

o set infinite distance = 16 hops (why?) 40



General Routing Loops and Reverse-poison

41

q Exercise: Can Reverse-poison guarantee no loop for this 
network?



General Routing Loops and Reverse-poison

q Reverse-poison removes two-node loops but 
may not remove more-node loops

42

I can reach 

D w/ cost 3

q Unfortunate timing can lead to a loop
• When the link between C and D fails, C will set its distance 

to D as ∞
• A receives the bad news (∞) from C, A will use B to go to D
• A sends the news to C
• C sends the news to B


