<u>Network Applications:</u> <u>DNS; Network Programming:</u> <u>UDP, TCP</u>

Qiao Xiang, Congming Gao

https://sngroup.org.cn/courses/cnnsxmuf23/index.shtml

09/28/2023

This deck of slides are heavily based on CPSC 433/533 at Yale University, by courtesy of Dr. Y. Richard Yang.

Admin. and recap
 Basic network applications

 DNS

 Java in a Nutshell
 Network application programming

Recap: Email App

Some key design features of Email

- Separate protocols for different functions
 - email access (e.g., POP3, IMAP)
 - email transport (SMTP)
- Separation of envelop and message body (end-to-end arguments)
 - envelop: simple/basic requests to implement transport control;
 - message body: fine-grain control through ASCII header and message body
 - MIME type as self-describing data type
- Status code in response makes message easy to parse

Evaluation of SMTP/POP/IMAP

Detection Methods Used by GMail

Known phishing scams

Message from unconfirmed sender identity

- Message you sent to Spam/similarity to suspicious messages
- Administrator-set policies

https://support.google.com/mail/answer/1366858?hl=en

Email Authentication Approaches

Sender Policy Frame (SPF)

DomainKeys Identified Mail (DKIM) Authenticated Results Chain (ARC)

https://tools.ietf.org/html/rfc7208

Sender Policy Framework (SPF RFC7208)

DomainKeys Identified Mail (DKIM)

<u>Summary: Some Key Remaining</u> <u>Issues about Email</u>

Basic: How to find the email server of a domain?

Scalability/robustness: how to find multiple servers for the email domain?

Security

- SPF: How does SPF know if its neighbor MTA is a permitted sender of the domain?
- DKIM: How does DKIM retrieve the public key of the author domain?

Admin. and recap
 Network applications
 Email
 DNS

DNS: Domain Name System

http://www.iana.org/assignments/dnsparameters/dns-parameters.xhtml

DNS Records

DNS: stores resource records (RR)

RR format: (name, type, value, ttl)

- □ Type=A
 - name is hostname
 - value is IP address
- Type=NS
 - name is domain (e.g. xmu.edu.cn)
 - value is the name of the authoritative name server for this domain
- Type=TXT
 - general txt

Type=CNAME

- name is an alias of a
 "canonical" (real) name
- value is canonical name

□ Type=MX

 value is hostname of mail server associated with name

□ Type=SRV

 general extension for services

Type=PTR

• a pointer to another name 12

Can DNS handle multiple values for the same (name, service)?

Try DNS: Examples

□ dig <name> <type>

• Try xmu.edu.cn / others and various types

dig <domain> txt to retrieve spf

http://www.zytrax.com/books/dns/ch9/spf.html

□ MX can return multiple servers

DNS may rotate the servers in answer

Address can also return multiple addresses

□ SPF is encoded as the txt type

- Admin. and recapDNS
 - > High-level design
 - Details

Send email from hotmail and check message

- S: +OK sina pop3 server ready
- C: user xmucnns
- S: +OK welcome to sina mail
- C: pass 334f5605df1504f9
- S: +OK 4 messages (32377 octets)

DKIM Example

- DKIM / ARC:
 - Msg: ARC-Message-Signature: i=1; a=rsa-sha256;
 - c=relaxed/relaxed; d=microsoft.com; s=arcselector9901;
 - h=From:Date:Subject:Message-ID:Content-Type:MIME-Version;
 - bh=bO91TxHI+4MjgAusrfg0EWGiDmvQ5hZRZ/aqb1MKLY8 =; ...
 - DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;
 - d=hotmail.com; s=selector1; h=From:Date:Subject:Message-
 - ID:Content-Type:MIME-Version:X-MS-Exchange-
 - SenderADCheck;...
- Query: dig arcselector9901._domainkey.microsoft.com txt
- DKIM introduces a session key to allow multiple public keys
 - o <session>._domainkey.<domain>

DNS Design: Dummy Design

- DNS itself can be considered as a client-server system as well
- How about a dummy design: introducing one super Internet DNS server?

THE DNS server of the Internet

Problems of a Single DNS Server

Scalability and robustness bottleneck

Administrative bottleneck

<u>DNS: Distributed Management of</u> <u>the Domain Name Space</u>

A distributed database managed by authoritative name servers

- o divided into zones, where each zone is a sub-tree of the global tree
- each zone has its own authoritative name servers
- an authoritative name server of a zone may delegate a subset (i.e. a sub-tree) of its zone to another name server

Email Architecture + DNS

Root Zone and Root Servers

□ The root zone is managed by the root name servers

13 root name servers worldwide

- d. U Maryland College Park, MD
- g. US DoD Vienna, VA

j. Verisign, (11 locations)

- h. ARL Aberdeen, MD
- e. NASA Mt View, CA
- f. Internet Software C.
 Palo Alto, CA
 (and 17 other locations)

 i. Autonomica, Stockholm (plus 3 other locations)
 k. RIPE London (also Amsterdam, Frankfurt)

m. WIDE Tokyo

Linking the Name Servers

- Each name server knows the addresses of the root servers
- Each name server knows the addresses of its immediate children (i.e., those it delegates)

<u>DNS Message Flow:</u> <u>Two Types of Queries</u>

<u>Recursive query:</u>

The contacted name server resolves the name completely

Iterated query:

Contacted server replies with name of server to contact

• "I don't know this name, but ask this server"

Two Extreme DNS Message Flows

<u>Typical DNS Message Flow:</u> <u>The Hybrid Case</u>

- Host knows only local name server
- Local name server is learned from DHCP, or configured, e.g. /etc/resolv.conf
- Local DNS server helps clients resolve DNS names

<u>Typical DNS Message Flow:</u> <u>The Hybrid Case</u>

- Host knows only local name server
- Local name server is learned from DHCP, or configured, e.g. /etc/resolv.conf
- Local DNS server helps clients resolve DNS names
- Benefits of local name servers (often called resolvers)
 - simplifies client
 - caches/reuses results

- Admin. and recap
 DNS
 High-level design
 - > Details

DNS Message Format?

Basic encoding decisions: UDP/TCP, how to encode domain name, how to encode answers...

Observing DNS Messages

Capture the messages

- DNS server is at port 53
 - Display and clear DNS cache
 - MacOS: <u>https://support.apple.com/en-us/HT202516</u> sudo killall -HUP mDNSResponder
 - Ubuntu:

sudo systemd-resolve --flush-caches

sudo systemd-resolve --statistics

 Try to load the dns-capture file from class Schedule page, if you do not want live capture https://www.ietf.org/rfc/rfc1035.txt DNS Protocol, Messages

<u>DNS protocol</u>: typically over UDP (can use TCP); *query* and *reply* messages, both with the same *message format*

Identification	Flags	
Number of questions	Number of answer RRs	-12 bytes
Number of authority RRs	Number of additional RRs	
Questions (variable number of questions)		–Name, type fields for a query
Answers (variable number of resource records)		RRs in response to query
Authority (variable number of resource records)		 Records for authoritative servers
Additional information (variable number of resource records)		Additional "helpful" info that may be used

DNS Details

□ Header (Sec. 4.1.1 of https://www.ietf.org/rfc/rfc1035.txt) Encoding of questions (Sec. 4.1.2): [Label-length label-chars] Encoding of answers (Sec. 4.1.3) Pointer format (http://www.iana.org/assignments/dnsparameters/dns-parameters.xhtml)

See example DNS packets

Name Encoding

length

<u>Message Compression</u> (Label Pointer)

https://www.ietf.org/rfc/rfc1035.txt <u>Recap: DNS Protocol, Messages</u>

Many features: typically over UDP (can use TCP); *query* and *reply* messages with the same message format; *length/content encoding of names; simple compression;* additional info as server push

