
Network Applications:
Network Programming:

UDP, TCP

This deck of slides are heavily based on CPSC 433/533 at Yale University, by courtesy of Dr. Y. Richard Yang.

Qiao Xiang, Congming Gao

https://sngroup.org.cn/courses/cnns-
xmuf23/index.shtml

10/07/2023

Outline

q Admin. and recap
q Basic network applications

o Email
o DNS

q Java in a Nutshell
q Network application programming

2

Admin

q Assignment One due today
q Assignment Two linked on the schedule

page
o Oct. 19, in class or by email to the instructor

q A list of potential project topics to be
linked on the schedule page next week
o 2~4 persons per team
o Talk to the instructor for more details
o More topics to post soon

3

4

Recap: DNS Protocol, Messages
Many features: typically over UDP (can use TCP); query

and reply messages with the same message format;
length/content encoding of names; simple compression;
additional info as server push

https://www.ietf.org/rfc/rfc1035.txt

Name Encoding

5

xmu educn
length

Message Compression
(Label Pointer)

6

DNS
start

question

Answer:
offset 12

7

What DNS did Right?

q Hierarchical delegation avoids central control,
improving manageability and scalability

q Redundant servers improve robustness
o see http://www.internetnews.com/dev-

news/article.php/1486981 for DDoS attack on root
servers in Oct. 2002 (9 of the 13 root servers were
crippled, but only slowed the network)

q Caching reduces workload and improves robustness

q Proactive answers reduce # queries on server and
latency on client

http://www.internetnews.com/dev-news/article.php/1486981

8

Problems of DNS

q Simple query model, relatively static resource values and
types make it harder to implement generic service discovery
o e.g., service discovery of all printers
o Although theoretically you can update the values of the records, it is

rarely enabled

q Early binding (separation of DNS query from application
query) does not work well in mobile, dynamic environments
o e.g., load balancing, locate the nearest printer

q Each local domain needs servers, but an ad hoc domain
may not have a DNS server

Outline

q Admin. and recap
q DNS

Ø High-level design
Ø Details
Ø Extensions/alternatives

9

Discussions

q What extension(s) to standard DNS
operations do we need to allow service
discovery, say to implement Bonjour
(discover all local printers)?
o each printer needs to provide the following

info: host, port, printer info (e.g., support
postscript)

10

11

DNS-Service Discovery

q Leverage DNS message format, but each
node can announce its own services

Printer
Network

169.254.1.219

169.254.4.51

169.254.10.29

12

Realizing DNS-SD without Central DNS
Server: mDNS

q Multicast in a small world
o no central address server

• each node is a responder
o link-local addressing

• send to multicast
address: 224.0.0.251

Printer
Network

169.254.1.219

169.254.4.51

169.254.10.29

13

Example
q Use the avahi-publish-service command on Ubuntu as

example
o Advertise (register) an LPR printer on port 515

avahi-publish-service test _printer._tcp . 515
pdl=application/postscript

Name of
instance

providing
the service

<type_service>.
<transport>

port

Txt for
additional

data
13

14

Example
q Use the dns-sd command on Mac as example

o Advertise (register) an LPR printer on port 515

dns-sd -R "test" _printer._tcp . 515
pdl=application/postscript

Name of
instance

providing
the service

<type_service>.
<transport>

domain (. means
default, which is

local

port

Txt for
additional

data
14

15

Offline Exercise
q Use the dns-sd /avahi-publish-service command as

example
o Advertise (register) a web page on local machine

dns-sd -R "My Test" _http._tcp . 80
path=/path-to-page.html

16

17

Issue: How to Query
q Query needs a back pointer, PTR records
q Exercise: Use the dns-sd / avahi-service-publish

command as example

o Browse web pages on local machines

dns-sd -B _http._tcp
avahi-browse –rt _http._tcp

18

Network Service Discovery in Android

q Based on DNS-SD/mDNS
q Foundation for peer-to-peer/Wi-Fi Direct in Android

q See https://developer.android.com/training/connect-
devices-wirelessly/nsd.html for programming using
nsd

https://developer.android.com/training/connect-devices-wirelessly/nsd.html

Outline

q Admin. and recap
q Basic network applications

o Email
o DNS

Ø Java in a Nutshell

19

High-level Picture

20

Prog 1

Prog 1; Arch 1 Prog 1; Arch n

Prog 2

Prog 2; Arch 1 Prog 2; Arch n’

C/C++

Java Virtual Machine

q To be platform independent, Java designers
introduced Java Virtual Machine (JVM), a machine
different from any physical platform, but a virtual
machine
o The language of the virtual machine is referred to as bytecode
o Thus Java actually has two programming languages

q A Java compiler translates Java source code (.java
files) into bytecode (in .class files)
o Each Java software program needs to be compiled only

once: from the Java source code to bytecode

q Other languages (e.g., Jruby, Jython, Scala) may
also compile to bytecode

21

22

Java Execution

q To execute a Java program, another piece of
software called an interpreter, translates
between bytecode and the actual machine
o an interpreter is specific to a specific platform
o the interpreter understands java bytecode, and

then issues instructions in the specific platform
for which it is written

o we also say that an interpreter provides a java
virtual machine (JVM)

23

Java Translation and Execution
Java source code

Java compiler

bytecode interpreter
for Windows

bytecode interpreter
for Android

Java bytecode

bytecode interpreter
for Mac

bytecode interpreter
for Linux

Comparing Traditional (e.g., C/C++)
and Java Software Development

q A developer writes a program
in C/C++

q The C/C++ source code is
generally considered
proprietary, and not released

q The developer compiles the
C/C++ program for each
platform it intends to support,
and distributes one version for
each platform
o thus each program has

multiple compiled versions
o each compiled version can run

by itself
q Platform dependency

handled by each software
developer

24

Traditional, e.g., C/C++
q A developer writes a program

in Java
q The Java source code is

generally considered
proprietary, and not released

q The developer compiles the
Java program to bytecode,
and distributes the bytecode
version
o thus each program has only

one compiled version
o the compiled bytecode needs

an interpreter for each
platform

q Platform dependency handled
by platform vendor

Java

High-level Picture

25

Prog 1

Prog 1; Arch 1 Prog 1; Arch n

Prog 2

Prog 2; Arch 1 Prog 2; Arch n’

Prog 1

Prog 1/bytecode

Prog 2

Prog 2/bytecode Interp; Arch 1 Interp; Arch n

C/C++

Java

Recall: Java Programming Steps

26

q Programming in Java consists of 3 simple
steps

o Create and edit “Java source code” (.java files)
o Compile into “Java bytecode” (.class files)
o Execute bytecode with a “Java interpreter”

run
output

source code
compile

byte code

27

Programming in Java (Step 1): Create/Edit

q The basic way is to use a text editor
o Example editors: vim, sublime, Notepad,

TextEdit (Format/Make Plain Text) etc.
• Note: MS Word is NOT a text editor

o The key is that your .java file cannot include
any markup or stylistic formatting; just text.

o You enter your Java code following Java
Language syntax (more soon).

28

Programming in Java (Step 2): Compile

q Compile a Java program
$ javac HelloWorld.java

q Take a look to see that HelloWorld.class is generated
$ ls
HelloWorld.java HelloWorld.class

29

Programming in Java (Step 3): Execute

q Run Java interpreter
$ java HelloWorld

First Java Program

30

/*************************************
* Prints “Hello World”
* Everyone’s first Java program.
*************************************/

public class Hello {
public static void main(String[] args) {

System.out.println("Hello, world!");
}

}

Another Java Program

31

public class Hello2 {
public static void main(String[] args) {

System.out.println("Hello, world!");
System.out.println();
System.out.println("This program produces");
System.out.println("four lines of output");

}
}

32

Programming in Java: Method 2
q Another way is to use an Integrated Development

Environment (IDE)
o Example IDEs: Eclipse, IDEA, DrJava, etc.
o An IDE usually presents the user with a space for text (like an

editor) but layers additional features on top of the text for
the user's benefit.

• Note: The underlying file contains pure text, just like a text editor.
o These features can be very useful and save time.

• Example features are GUI compile, GUI execution, code completion,
and syntax highlighting.

o IDEs take more time to get started than a simple text editor,
e.g.,
• set up where to find the “java” and “javac” programs
• find out where does the IDE save my file

Java Syntax Structure: A Top-Down
View

public class <class name> {
public static void main(String[] args) {

<statement>;
<statement>;
...
<statement>;

}
}

33

A class:
- has a name, defined in a file with same name
Convention we follow: capitalize each English word

- starts with {, and ends with }
- includes a group of methods

A method:
- has a name

Convention we follow: lowercase first
word, capital following

- starts with {, and ends with }
- includes a group of statements

statement:
- a command to be executed

- end with ;

The System.out.println statement

q A statement that prints a line of output on
the console.
o pronounced "print-linn”

q Two ways to use System.out.println :

o System.out.println(<string>);

Prints the given message <string> as output.

o System.out.println();

Prints a blank line of output.
34

Java program structure

q A top-down view
q A bottom-up view

35

36

Java Syntax: A Bottom-Up View
// Comment 1: A Java program
/* Comment 2: a long comment
*********************************/

public class Hello {
public static void main(String[] args) {

System.out.println("Hello, world!");
System.out.println();
System.out.println("This program produces");
System.out.println("four lines of output");

}
}

37

Java Syntax: A Bottom-Up View

q Basic Java syntax units
o white space and comments
o identifiers (words)
o symbols: { } “ () < > [] ; = …
o strings
o numbers

// Comment 1: A Java program
/* Comment 2: a long comment
*********************************/

public class Hello {
public static void main(String[] args) {

System.out.println("Hello, world!");
System.out.println();
System.out.println("This program produces");
System.out.println("four lines of output");

}
}

38

Syntax: White Space
q White space

o includes spaces, new line characters, tabs
o white space is used to separate other entities
o extra white space is ignored

q White space allows a Java program to be
formatted in many ways, and should be
formatted to enhance readability
o the usage of white space forms part of

programming style

39

Syntax: Comments
q comment: A note written in source code by the

programmer to describe or clarify the code.
o Comments are ignored by the compiler
o Useful for other people (and yourself!) to

understand your code

q Two types of comments in Java
• single-line comments use //…

// this comment runs to the end of the line

• multi-lines comments use /* … */
/* this is a very long

multi-line comment */

Syntax: Identifier

q Identifier: A name given to an item in a
program.

q Syntax requirement on identifier:
o must start with a letter or _ or $
o subsequent characters can be any of those or a

number
o Important: Java is case sensitive:

• Hello and hello are different identifiers

40

41

Three Types of Identifiers

1. Identifiers chosen by ourselves when writing
a program (such as HelloWorld)

2. Identifiers chosen by another programmer,
so we use the identifiers that they chose
(e.g., System, out, println, main)

public class HelloWorld
{

public static void main(String[] args)
{

System.out.println(“Hello World!”);
}

}

42

Three Types of Identifiers
3. Special identifiers called keywords or reserved words:

A keyword has a special meaning in Java.

Java reserved words: they are all lowercase!

abstract default if private this
boolean do implements protected throw
break double import public throws
byte else instanceof return transient
case extends int short try
catch final interface static void
char finally long strictfp volatile
class float native super while
const for new switch
continue goto package synchronized

Syntax: Strings

q string: A sequence of characters that
starts and ends with a " (quotation mark
character).

• The quotes do not appear in the output.

o Examples:
"hello"
"This is a string. It is very long!”

q Restrictions:
o May not span multiple lines

"This is not
a legal String."

43

Examples

qWhich of the following are legal
strings in Java?
o "This is a string. It’s very long!"

o "This cool string spans
two lines. "

o "It is a great thing when children cry, "I
want my mommy"! "

44

Escape Sequences

q escape sequence: A special sequence of
characters used to represent certain special
characters in a string.

\b backspace
\t tab character
\n new line character
\" quotation mark character
\\ backslash character

o Example:
System.out.println("\\hello\nhow\tare \"you\"?\\\\");

o Output:
\hello
how are "you"?\\

45

Comment on syntax errors

q A syntax/compile error: A problem in the
structure of a program that causes the compiler
to fail, e.g.,
o Missing semicolon
o Too many or too few { } braces
o Class and file names do not match
o …

q Compilers can’t (DO not) read minds.
q Compilers don’t make mistakes.
q If the program is not doing what you want, do

NOT blame the computer---it’s YOU who made a
mistake.

46

Outline

q Admin. and recap
q Basic network applications

o Email
o DNS

q Java in a Nutshell
q Network application programming

47

48

Socket Programming

Socket API
q introduced in

BSD4.1 UNIX, 1981

q Two types of
sockets
o connectionless (UDP)
o connection-oriented

(TCP)

an interface (a “door”)
into which one

application process can
both send and

receive messages to/from
another (remote or

local) application process

socket

49

Services Provided by Transport

q Transmission control
protocol (TCP)
o multiplexing/demultiplexing
o reliable data transfer
o rate control: flow control
and congestion control

q User data protocol
(UDP)
o multiplexing/demultiplexing

Host A

Hello

Host B

I am ready

DATA

ACK

50

Big Picture: Socket

buffers,
states

buffers,
states

Outline

q Admin. and recap
q Basic network application programming

Ø Overview
Ø UDP (Datagram Socket)

51

52

DatagramSocket(Java) (Basic)
q DatagramSocket()

constructs a datagram socket and binds it to any available port on the local host
q DatagramSocket(int lport)

constructs a datagram socket and binds it to the specified port on the local host machine.

q DatagramPacket(byte[] buf, int length)
constructs a DatagramPacket for receiving packets of length length.

q DatagramPacket(byte[] buf, int length, InetAddress address, int port)
constructs a datagram packet for sending packets of length length to the specified port

number on the specified host.

q receive(DatagramPacket p)
receives a datagram packet from this socket.

q send(DatagramPacket p)
sends a datagram packet from this socket.

q close()
closes this datagram socket.

Connectionless UDP: Big Picture (Java
version)

close
clientSocket

Server (running on serv)

read reply from
clientSocket

create socket,
clientSocket =
DatagramSocket()

Client

Create datagram using (serv,
x) as (dest addr. port),
send request using clientSocket

create socket,
port=x, for
incoming request:
serverSocket =
DatagramSocket(x)

read request from
serverSocket

write reply to
serverSocket

generate reply, create
datagram using client
host address, port number

53

54

Example: UDPServer.java
q A simple UDP server which changes any received

sentence to upper case.

55

Java Server (UDP): Create Socket
import java.io.*;
import java.net.*;

class UDPServer {
public static void main(String args[]) throws Exception

{

DatagramSocket serverSocket = new DatagramSocket(9876);

Create
datagram socket

bind at port 9876

Check socket state:
Ubuntu: %netstat –a –u –n
Mac: %netstat –a –p tcp/udp –n

56

System State after the Call
server

UDP socket space

address: {*:9876}
snd/recv buf:

128.36.232.5
128.36.230.2

address: {128.36.232.5:53}
snd/recv buf:

“*” indicates that the socket
binds to all IP addresses of
the machine:
% ifconfig -a

local address
why shown as “*”?

local port

57

Binding to Specific IP Addresses
server

UDP socket space

Public address: 128.36.59.2
Local address: 127.0.0.1

address: {128.36.232.5:53}
snd/recv buf:

InetAddress sIP1 =
InetAddress.getByName(“localhost”);

DatagramSocket ssock1 = new
DatagramSocket(9876, sIP1);

InetAddress sIP2 =
InetAddress.getByName(“128.36.59.2”);

DatagramSocket ssock2 = new
DatagramSocket(9876,sIP2);

DatagramSocket serverSocket = new
DatagramSocket(6789);

address: {127.0.0.1:9876}
snd/recv buf:

address: {128.36.59.2:9876}
snd/recv buf:

address: {*:6789}
snd/recv buf:

58

UDP Demultiplexing
server

UDP socket space

Public address: 128.36.59.2
Local address: 127.0.0.1

address: {128.36.232.5:53}
snd/recv buf:

UDP demutiplexing is based on matching (dst address, dst port)

address: {127.0.0.1:9876}
snd/recv buf:

address: {128.36.59.2:9876}
snd/recv buf:

P1

client
on server

SP: x
DP: 9876

S-IP: A
D-IP: 127.0.0.1

P2

client
IP: B

SP: y
DP: 9876

S-IP: B
D-IP: 128.36.59.2

59

UDP Demultiplexing
server

UDP socket space

Public address: 128.36.59.2
Local address: 127.0.0.1

address: {128.36.232.5:53}
snd/recv buf:

UDP demutiplexing is based on matching (dst address, dst port)

P1

Client
on server

SP: x
DP: 9876

S-IP: A
D-IP: 127.0.0.1

P3

client
IP: C

SP: y
DP: 6789
S-IP: C
D-IP: 128.36.59.2

address: {127.0.0.1:9876}
snd/recv buf:

address: {128.36.59.2:9876}
snd/recv buf:

address: {*:6789}
snd/recv buf:

Per Socket State

q Each Datagram socket has a set of states:
o local address
o send buffer size
o receive buffer size
o timeout
o traffic class

See
http://download.java.net/jdk7/archive/b123/docs/api/j
ava/net/DatagramSocket.html

Example: socket state after clients sent msgs
to the server 60

61

Java Server (UDP): Receiving
import java.io.*;

import java.net.*;

class UDPServer {

public static void main(String args[]) throws Exception

{

DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];

byte[] sendData = null;

while(true)

{

DatagramPacket receivePacket =

new DatagramPacket(receiveData, receiveData.length);

serverSocket.receive(receivePacket);

Create space for
received datagram

Receive
datagram

62

DatagramPacket

q Receiving
o DatagramPacket(byte[] buf, int length)

constructs a DatagramPacket for receiving packets of length
length.

o DatagramPacket(byte[] buf, int offset, int length)
constructs a DatagramPacket for receiving packets starting
at offset, length length.

q Sending
o DatagramPacket(byte[] buf, int length,

InetAddress address, int port)
constructs a datagram packet for sending packets of length
length to the specified port number on the specified host.

o DatagramPacket(byte[] buf, int offset, int length,
InetAddress address, int port)

63

Java Server (UDP): Processing

import java.io.*;
import java.net.*;

class UDPServer {
public static void main(String args[]) throws Exception {

…
// process data
String sentence = new String(receivePacket.getData(),

0, receivePacket.getLength());
String capitalizedSentence = sentence.toUpperCase();
sendData = capitalizedSentence.getBytes();

getData() returns a pointer to
an underlying buffer array;
for efficiency, don’t assume
receive() will reset the rest of
the array

getLength() returns how much
data is valid.

64

Java Server (UDP): Response
q Java DatagramPacket:

o getAddress()/getPort
() returns the source
address/port

65

Java server (UDP): Reply

InetAddress IPAddress = receivePacket.getAddress();

int port = receivePacket.getPort();

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length,

IPAddress, port);

serverSocket.send(sendPacket);
}

}
}

Get IP addr
port #, of

sender

Write out
datagram
to socket

End of while loop,
loop back and wait for
another datagram

Create datagram
to send to client

66

Example: UDPClient.java

q A simple UDP client which
reads input from
keyboard, sends the input
to server, and reads the
reply back from the
server.

67

Example: Java client (UDP)

import java.io.*;
import java.net.*;

class UDPClient {
public static void main(String args[]) throws Exception
{

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

String sentence = inFromUser.readLine();
byte[] sendData = sentence.getBytes();

DatagramSocket clientSocket = new DatagramSocket();

InetAddress sIPAddress = InetAddress.getByName(“servname");

Create
input stream

Create
client socket

Translate
hostname to IP

address using DNS

68

Example: Java client (UDP), cont.

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, sIPAddress, 9876);

clientSocket.send(sendPacket);

byte[] receiveData = new byte[1024];
DatagramPacket receivePacket =

new DatagramPacket(receiveData, receiveData.length);

clientSocket.receive(receivePacket);

String modifiedSentence =
new String(receivePacket.getData());

System.out.println("FROM SERVER:" + modifiedSentence);
clientSocket.close();
}

}

Create datagram
with data-to-send,

length, IP addr, port

Send datagram
to server

Read datagram
from server

Demo

%ubuntu: java UDPServer
%netstat to see buffer

%ubuntu: java UDPClient <server>

%wireshark to capture traffic

69

