
Network Applications:
TCP Socket Programming;

File Transfer Protocol； HTTP/1.0
Qiao Xiang, Congming Gao

https://sngroup.org.cn/courses/cnns-
xmuf23/index.shtml

10/10/2023

This deck of slides are heavily based on CPSC 433/533 at Yale University, by courtesy of Dr. Y. Richard Yang.

Outline

q Admin. and recap
q Network application programming

o UDP sockets
o TCP sockets

q Network applications (continue)
o File transfer (FTP) and extension
o HTTP

o HTTP/1.0

2

Admin.

q Lab assignment 2 due Oct. 19
o LLM-related tools are strictly prohibited for

this assignment

3

4

Recap: Services Provided by
Transport

q Transmission control
protocol (TCP)
o multiplexing/demultiplexing
o reliable data transfer
o rate control: flow control
and congestion control

q User data protocol
(UDP)
o multiplexing/demultiplexing

Host A

Hello

Host B

I am ready

DATA

ACK

5

Big Picture: Socket

buffers,
states

buffers,
states

Discussion on Example Code

q A simple upper-case UDP echo service is
among the simplest network service.

q Are there any problems with the program?

6

7

Example: UDPClient.java

q A simple UDP client which
reads input from
keyboard, sends the input
to server, and reads the
reply back from the
server.

Demo

%ubuntu: java UDPServer
%netstat to see buffer

%ubuntu: java UDPClient <server>

%wireshark to capture traffic

8

Data Encoding/Decoding

q Rule: ALWAYS pay attention to encoding/decoding of
data

9

byte
array

query

encoding decoding

client server

if not careful, query sent !=
query received (how?)

result

Example: Endianness of Numbers

q int var = 0x0A0B0C0D

q sent != received: take an int on a big-endian
machine and send a little-endian machine

10

Intel x86 ARM, Power PC, Motorola 68k, IA-64

Example: String and Chars

11

String

byte
array

String.getBytes()

client server

Will we always get back the
same string?

String(rcvPkt,
0, rcvPkt.getLength());

Depends on default local platform char set :
java.nio.charset.Charset.defaultCharset()

(UTF-16)
String

(UTF-16)

Example: Charset Troubles

q Try
o java EncodingDecoding UTF-8 UTF-16

12

Encoding/Decoding as a
Common Source of Errors
q Please read chapter 2 (Streams) of Java

Network Programming for more details
o Java stream, reader/writer can always be

confusing, but it is good to finally understand

q Common mistake even in many (textbook)
examples:
o http://www.java2s.com/Code/Java/Network-

Protocol/UseDatagramSockettosendoutandrece
iveDatagramPacket.htm

13

Exercise: UDP/DNS Server Pseudocode

14

q Modify the example UDP server code to
implement a local DNS server.

requesting host
cyndra.cs.yale.edu

gaia.cs.umass.edu

root name server

1

2 3
4

authoritative name server
dns.cs.umass.edu

56

TLD name server

7

8

local name server
130.132.1.9

15

UDP/DNS Implementation

q Standard UDP
demultiplexing (find out
return address by
src.addr/src.port of UDP
packet) does not always
work

q DNS solution:
identification: remember
the mapping

Outline

q Admin. and recap
q Network application programming

o Overview
o UDP
Ø Basic TCP

16

TCP Socket Design: Starting w/ UDP
server

Socket socket space

address: {*:9876}
snd/recv buf:

128.36.232.5
128.36.230.2

local address
local port Issue: If a single socket, data can be

mixed, but TCP is designed to
provide a pipe abstraction: server
reads an ordered sequence of bytes
from each individual client.

Issue 2: How to notify an app that a
new client is connected?

P1

client1

P2

client2

sock.nextByte(client1)?

newClient = sock.getNewClient()?
17

BSD TCP Socket API Design
server

TCP socket space

128.36.232.5
128.36.230.2

Q: How to decide where to put a new TCP packet?

address: {*:9876}
snd/recv buf:

address: {*:9876; client 1 IP/port}
snd/recv buf:

address: {*:9876; client 2 IP/port}
snd/recv buf:

socket for new
connected clients

P1

client1

P2

client2

A: Packet demutiplexing is based on four tuples:
(dst addr, dst port, src addr, src port)

An individual
socket

for client 1

An individual
socket

for client 2

18

TCP Connection-Oriented Demux

q TCP socket identified by 4-tuple:
o source IP address
o source port number
o dest IP address
o dest port number

q recv host uses all four values to direct segment to
appropriate socket
o different connections/sessions are automatically

separated into different sockets

19

20

TCP Socket Big Picture
-Welcome socket: the waiting room
-connSocket: the operation room

Client/server Socket Workflow: TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket(x)

create socket,
connect to hostid, port=x
clientSocket =

Socket()

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Server (running on hostid) Client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

21

Server Flow

connSocket = accept()

Create ServerSocket(6789)

read request from
connSocket

Serve the request

close connSocket

-Welcome socket: the waiting room
-connSocket: the operation room

22

23

ServerSocket
q ServerSocket()

o creates an unbound server socket.
q ServerSocket(int port)

o creates a server socket, bound to the specified port.
q ServerSocket(int port, int backlog)

o creates a server socket and binds it to the specified local port number, with the
specified backlog.

q ServerSocket(int port, int backlog, InetAddress bindAddr)
o creates a server with the specified port, listen backlog, and local IP address to bind to.

q bind(SocketAddress endpoint)
o binds the ServerSocket to a specific address (IP address and port number).

q bind(SocketAddress endpoint, int backlog)
o binds the ServerSocket to a specific address (IP address and port number).

q Socket accept()
o listens for a connection to be made to this socket and accepts it.

q close()
closes this socket.

24

(Client)Socket
q Socket(InetAddress address, int port)

o creates a stream socket and connects it to the specified port number at the specified
IP address.

q Socket(InetAddress address, int port, InetAddress localAddr, int localPort)
o creates a socket and connects it to the specified remote address on the specified

remote port.
q Socket(String host, int port)

o creates a stream socket and connects it to the specified port number on the named
host.

q bind(SocketAddress bindpoint)
o binds the socket to a local address.

q connect(SocketAddress endpoint)
o connects this socket to the server.

q connect(SocketAddress endpoint, int timeout)
o connects this socket to the server with a specified timeout value.

q InputStream getInputStream()
o returns an input stream for this socket.

q OutputStream getOutputStream()
o returns an output stream for this socket.

q close()
closes this socket.

25

Simple TCP Example

Example client-server app:
1) client reads line from

standard input (inFromUser
stream) , sends to server via
socket (outToServer
stream)

2) server reads line from socket
3) server converts line to

uppercase, sends back to
client

4) client reads, prints modified
line from socket
(inFromServer stream)

Example: Java client (TCP)
import java.io.*;

import java.net.*;

class TCPClient {

public static void main(String argv[]) throws Exception

{

String sentence;

String modifiedSentence;

BufferedReader inFromUser =

new BufferedReader(new InputStreamReader(System.in));

sentence = inFromUser.readLine();

Socket clientSocket = new Socket(“server.name", 6789);

DataOutputStream outToServer =

new DataOutputStream(clientSocket.getOutputStream());

Create
input stream

Create
client socket,

connect to server
Create

output stream
attached to socket

26

OutputStream
q public abstract class OutputStream

o public abstract void write(int b) throws IOException

o public void write(byte[] data) throws IOException

o public void write(byte[] data, int offset, int length) throws IOException

o public void flush() throws IOException

o public void close() throws IOException

27

InputStream

q public abstract class InputStream

o public abstract int read() throws IOException

o public int read(byte[] input) throws IOException

o public int read(byte[] input, int offset, int length) throws IOException

o public long skip(long n) throws IOException

o public int available() throws IOException

o public void close() throws IOException

28

Example: Java client (TCP), cont.

outToServer.writeBytes(sentence + '\n');

BufferedReader inFromServer =
new BufferedReader(new
InputStreamReader(clientSocket.getInputStream()));

modifiedSentence = inFromServer.readLine();

System.out.println("FROM SERVER: " + modifiedSentence);

clientSocket.close();

}
}

Read line
from server

Create
input stream

attached to socket

Send line
to server

29

Example: Java server (TCP)
import java.io.*;
import java.net.*;

class TCPServer {

public static void main(String argv[]) throws Exception
{

String clientSentence;
String capitalizedSentence;

ServerSocket welcomeSocket = new ServerSocket(6789);

while(true) {

Socket connectionSocket = welcomeSocket.accept();

BufferedReader inFromClient =
new BufferedReader(new
InputStreamReader(connectionSocket.getInputStream()));

Create
welcoming socket

at port 6789

30

Demo

% on MAC
start TCPServer
wireshark to capture our TCP traffic
tcp.srcport==6789 or tcp.dstport==6789

31

Under the Hood: After Welcome
(Server) Socket

server client
TCP socket space

state: listening
address: {*:6789, *:*}
completed connection queue:
sendbuf:
recvbuf:

128.36.232.5
128.36.230.2

TCP socket space

state: listening
address: {*:25, *:*}
completed connection queue:
sendbuf:
recvbuf:

198.69.10.10

state: listening
address: {*:25, *:*}
completed connection queue:
sendbuf:
recvbuf:

state: starting
address: {198.69.10.10:1500, *:*}
sendbuf:
recvbuf:

local addr
local port

remote addr

remote port

%netstat –p tcp –n -a
32

After Client Initiates Connection
server client

TCP socket space

state: listening
address: {*:6789, *.*}
completed connection queue:
sendbuf:
recvbuf:

128.36.232.5
128.36.230.2

TCP socket space

state: listening
address: {*.25, *.*}
completed connection queue:
sendbuf:
recvbuf:

198.69.10.10

state: listening
address: {*.25, *.*}
completed connection queue:
sendbuf:
recvbuf:

state: connecting
address: {198.69.10.10:1500, 128.36.232.5:6789}
sendbuf:
recvbuf:

%ubuntu java TCPClient <server> 6789

Example: Client Connection
Handshake Done

server client
TCP socket space

state: listening
address: {*:6789, *:*}
completed connection queue:
{128.36.232.5.6789, 198.69.10.10.1500}
sendbuf:
recvbuf:

128.36.232.5
128.36.230.2

TCP socket space

state: listening
address: {*:25, *:*}
completed connection queue:
sendbuf:
recvbuf:

198.69.10.10

state: listening
address: {*:25, *:*}
completed connection queue:
sendbuf:
recvbuf:

state: connected
address: {198.69.10.10:1500, 128.36.232.5:6789}
sendbuf:
recvbuf:

34

Example: Client Connection
Handshake Done

server client
TCP socket space

state: listening
address: {*.6789, *:*}
completed connection queue:
sendbuf:
recvbuf:

128.36.232.5
128.36.230.2

TCP socket space

state: listening
address: {*.25, *:*}
completed connection queue:
sendbuf:
recvbuf:

198.69.10.10

state: listening
address: {*.25, *:*}
completed connection queue:
sendbuf:
recvbuf:

state: connected
address: {198.69.10.10.1500, 128.36.232.5:6789}
sendbuf:
recvbuf:

state: established
address: {128.36.232.5:6789, 198.69.10.10.1500}
sendbuf:
recvbuf:

Packet sent to the socket with the best match!
Packet demutiplexing is based on (dst addr, dst port, src addr, src port)

35

Demo

q What if more client connections than
backlog allowed?
o We continue to start java TCPClient

36

Example: Java server (TCP)
import java.io.*;
import java.net.*;

class TCPServer {

public static void main(String argv[]) throws Exception
{

String clientSentence;
String capitalizedSentence;

ServerSocket welcomeSocket = new ServerSocket(6789);

while(true) {

Socket connectionSocket = welcomeSocket.accept();

BufferedReader inFromClient =
new BufferedReader(new
InputStreamReader(connectionSocket.getInputStream()));

Wait, on welcoming
socket for contact

by client

37

Example: Server accept()
server client

TCP socket space

state: listening
address: {*.6789, *:*}
completed connection queue:
sendbuf:
recvbuf:

128.36.232.5
128.36.230.2

TCP socket space

state: listening
address: {*.25, *:*}
completed connection queue:
sendbuf:
recvbuf:

198.69.10.10

state: listening
address: {*.25, *:*}
completed connection queue:
sendbuf:
recvbuf:

state: connected
address: {198.69.10.10.1500, 128.36.232.5:6789}
sendbuf:
recvbuf:

state: established
address: {128.36.232.5:6789, 198.69.10.10.1500}
sendbuf:
recvbuf:

connectionSocket

38

Example: Java server (TCP):
Processing

BufferedReader inFromClient =
new BufferedReader(new

InputStreamReader(connectionSocket.getInputStream()));

clientSentence = inFromClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + '\n';

DataOutputStream outToClient =
new DataOutputStream(connectionSocket.getOutputStream());

outToClient.writeBytes(capitalizedSentence);
}

}
}

Read in line
from socket

Create input
stream, attached

to socket

39

Example: Java server (TCP): Output

BufferedReader inFromClient =
new BufferedReader(new

InputStreamReader(connectionSocket.getInputStream()));

clientSentence = inFromClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + '\n';

DataOutputStream outToClient =
new DataOutputStream(connectionSocket.getOutputStream());

outToClient.writeBytes(capitalizedSentence);
}

}
}

Create output
stream, attached

to socket

Write out line
to socket

End of while loop,
loop back and wait for
another client connection

40

Analysis

q Assume that client requests arrive at a
rate of lambda/second

q Assume that each request takes 1/!
seconds

q A basic question
o How big is the backlog (welcome queue)

41

Welcome
Socket
Queue

Analysis

q Is there any interop issue in the sample
program?

42

Analysis

q Is there any interop issue in the sample
program?
q DataOutputStream writeBytes(String)

truncates
– http://docs.oracle.com/javase/1.4.2/docs/api/java/io/DataOu

tputStream.html#writeBytes(java.lang.String)

43

Summary: Basic Socket
Programming

q They are relatively straightforward
o UDP: DatagramSocket
o TCP: ServerSocket, Socket

q The main function of socket is
multiplexing/demultiplexing to application
processes
o UDP uses (dst IP, port)
o TCP uses (src IP, src port, dst IP, dst port)

q Always pay attention to encoding/decoding

44

Outline

q Admin. and recap
q Network application programming

o UDP sockets
o TCP sockets

q Network applications (continue)
Ø File transfer (FTP) and extension

45

46

FTP: the File Transfer Protocol

q Transfer files to/from remote host
q Client/server model

o client: side that initiates transfer (either to/from
remote)

o server: remote host
q ftp: RFC 959
q ftp server: port 21/20 (smtp 25, http 80)

file transfer FTP
server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

47

FTP Commands, Responses

Sample commands:

q sent as ASCII text over control
channel

q USER username
q PASS password
q PWD returns current dir
q STAT shows server status
q LIST returns list of file in

current directory
q RETR filename retrieves

(gets) file
q STOR filename stores file

Sample return codes
q status code and phrase
q 331 Username OK,

password required
q 125 data connection

already open;
transfer starting

q 425 Can’t open data
connection

q 452 Error writing
file

48

FTP Protocol Design

q What is the
simplest design of
data transfer?

FTP
client

FTP
server

TCP control connection
port 21 at server

RETR file.dat

data

49

FTP: A Client-Server Application with
Separate Control, Data Connections
q Two types of TCP connections opened:

o A control connection: exchange commands,
responses between client, server.
“out of band control”

o Data connections: each for file data
to/from server

Discussion: why does FTP separate control/data connections?

Q: How to create a new data connection?

50

Traditional FTP: Client Specifies Port for
Data Connection

FTP
client

FTP
server

TCP control connection
port 21 at server

PORT clientip:cport

RETR file.dat

Server initiates TCP
data connection

server:20
clientip:cport

51

Example using telnet/nc

q Use telnet for the control channel
o telnet ftp.ietf.org 21
o user anonymous
o pass your_email
o port 10,90,61,172,4,1
o list

q use nc (NetCat) to receive/send data
with server
o nc –v –l 1025

client
IP address

port
number

52

Problem of the Client PORT Approach

q Many Internet
hosts are behind
NAT/firewalls that
block connections
initiated from
outside

FTP
client

FTP
server

TCP control connection
port 21 at server

PORT clientip:cport

RETR file.dat

Server initiates TCP
data connection

server:20
clientip:cport

