
Network Applications:
HTTP/1.0/1.1/2

Qiao Xiang, Congming Gao, Qiang Su

https://sngroup.org.cn/courses/cnns-
xmuf25/index.shtml

09/30/2025

This deck of slides are heavily based on CPSC 433/533 at Yale University, by courtesy of Dr. Y. Richard Yang.

Outline

q Admin. and recap
q Network applications (continue)

Ø File transfer (FTP) and extension
Ø HTTP

2

3

Recap: FTP

q Transfer files to/from remote host
q Client/server model

o client: side that initiates transfer (either to/from
remote)

o server: remote host
q ftp: RFC 959
q ftp server: port 21/20 (smtp 25, http 80)

file transfer FTP
server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

4

FTP: A Client-Server Application with
Separate Control, Data Connections
q Two types of TCP connections opened:

o A control connection: exchange commands,
responses between client, server.
“out of band control”

o Data connections: each for file data
to/from server

Discussion: why does FTP separate control/data connections?

Q: How to create a new data connection?

5

Traditional FTP: Client Specifies Port for
Data Connection

FTP
client

FTP
server

TCP control connection
port 21 at server

PORT clientip:cport

RETR file.dat

Server initiates TCP
data connection

server:20
clientip:cport

6

Problem of the Client PORT Approach

q Many Internet
hosts are behind
NAT/firewalls that
block connections
initiated from
outside

FTP
client

FTP
server

TCP control connection
port 21 at server

PORT clientip:cport

RETR file.dat

Server initiates TCP
data connection

server:20
clientip:cport

7

FTP PASV: Server Specifies Data Port,
Client Initiates Connection

FTP
client

FTP
server

TCP control connection
port 21 at server

Server initiates TCP
data connection

server:20
clientip:cport

PORT clientip:cport

RETR file.dat

FTP
client

FTP
server

TCP control connection
port 21 at server

Client initiates TCP
data connection

of PASV returned
serverip:sport

PASV

RETR file.dat

serverip:sport

Outline

q Admin. and recap
q Network application programming

o UDP sockets
o TCP sockets

q Network applications (continue)
Ø File transfer (FTP) and extension
Ø HTTP

8

9

From Opaque Files to Web Pages

q Web page:
o authored in HTML
o addressed by a URL

• URL has two components:
– host name, port number

and
– path name

q Most Web pages
consist of:
o base HTML page, and
o several referenced

objects
o E.g., image

http://qiaoxiang.me:80/index.html

User agent:
Explorer

Server
running

Apache Web
server

User agent:
Firefox

http request

http request

http response

http
 response

The Web pages are requested through
HTTP: hypertext transfer protocol

10

HTTP is Still Evolving

RF
C 1

94
5

RF
C 2

06
8

RF
C 7

54
0

11

HTTP 1.0 Message Flow

q Server waits for requests from clients

q Client initiates TCP connection (creates socket) to
server, port 80

q Client sends request for a document
q Web server sends back the document
q TCP connection closed

q Client parses the document to find embedded
objects (images)
o repeat above for each image

12

HTTP 1.0 Message Flow (more detail)

Suppose user enters URL
qiaoxiang.me/index.html

1a. http client initiates TCP
connection to http server
(process) at qiaoxiang.me.
Port 80 is default for http
server.

2. http client sends http
request message
(containing URL) into
TCP connection socket

1b. server “accepts”
connection, ack. client

3. http server receives request
message, forms response
message containing requested
object (index.html), sends
message into socket (the
sending speed increases slowly,
which is called slow-start)

time

0. http server at host
qiaoxiang.me waiting for
TCP connection at port 80.

13

HTTP 1.0 Message Flow (cont.)

5. http client receives response
message containing html file,
parses html file, finds
embedded image

6. Steps 1-5 repeated for each
of the embedded images

4. http server closes TCP
connection.

time

Basic HTTP Server Workflow

TCP socket space

state: listening
address: {*.6789, *.*}
completed connection queue:
sendbuf:
recvbuf:

128.36.232.5
128.36.230.2

state: listening
address: {*.25, *.*}
completed connection queue:
sendbuf:
recvbuf:

state: established
address: {128.36.232.5:6789, 198.69.10.10.1500}
sendbuf:
recvbuf:

connSocket = accept()

Read from file/
write to connSocket

close connSocket

Create
ServerSocket(6789)

Map URL to file

read request from
connSocket

15

Example Code

q See BasicWebServer.java

q Try using telnet and real browser, and fetch
o file1.html
o index.html
what difference in behavior?

Static -> Dynamic Content

connSocket = accept()

Read from file/
write to connSocket

close connSocket

Create
ServerSocket(6789)

Map URL to file

read request from
connSocket

It does not
have to be a
static file

17

Outline

q Admin and recap
q HTTP/1.0

o Basic design
Ø Dynamic content

18

Dynamic Content Pages

q There are multiple approaches to make
dynamic web pages:
o Embed code into pages (server side include)

• http server includes an interpreter for the type of pages

o Invoke external programs (http server is
agnostic to the external program execution)
• E.g., Common Gateway Interface (CGI)

http://www.cs.yale.edu/index.shtml
http://www.cs.yale.edu/cgi-bin/ureserve.pl
http://www.google.com/search?q=Yale&sourceid=chrome

19

Example SSI

q See programming/examples-java-
socket/BasicWebServer/ssi/index.shtml,
header.shtml, …

20

Example SSI

q See programming/examples-java-
socket/BasicWebServer/ssi/index.shtml,
header.shtml, …

q To enable ssi, need configuration to tell the
web server (see conf/apache-htaccess)
o https://httpd.apache.org/docs/2.2/howto/htaccess.

html (Server Side Includes example)

https://httpd.apache.org/docs/2.2/howto/htaccess.html

21

CGI: Invoking External Programs

qTwo issues

o Input: Pass HTTP request parameters to the
external program

o Output: Redirect external program output to socket

22

Example: Typical CGI Implementation

q Starts the executable as a child process
o Passes HTTP request as environment variables

• http://httpd.apache.org/docs/2.2/env.html
• CGI standard: http://www.ietf.org/rfc/rfc3875

o Redirects input/output of the child process to the
socket

23

Example: CGI

q Example:

o GET /search?q=Yale&sourceid=chrome HTTP/1.0

o setup environment variables, in particular
$QUERY_STRING=q=Yale&sourceid=chrome

o start search and redirect its input/output

https://docs.oracle.com/javase/7/docs/api/java/lang/ProcessBuilder.html

24

Example

q http://172.28.229.215/BasicWebServer/cgi/price.cgi?appl

#!/usr/bin/perl -w

$company = $ENV{'QUERY_STRING'};
print "Content-Type: text/html\r\n";
print "\r\n";

print "<html>";
print "<h1>Hello! The price is ";

if ($company =~ /appl/) {
my $var_rand = rand();
print 450 + 10 * $var_rand;

} else {
print "150";

}

print "</h1>";
print "</html>";

https://httpd.apache.org/docs/2.2/howto/htaccess.html
(CGI Example)

25

Client Using Dynamic Pages

q See ajax.html and wireshark for client code
example
http://172.28.229.215/BasicWebServer/cgi/ajax.html

26

Discussions

q What features are missing in HTTP that we
have covered so far?

HTTP: POST

q If an HTML page contains forms or parameter too
large, they are sent using POST and encoded in
message body

27

HTTP: POST Example

28

POST /path/script.cgi HTTP/1.0
User-Agent: MyAgent
Content-Type: application/x-www-form-urlencoded
Content-Length: 15

item1=A&item2=B

Example using nc:
programming/examples-java-socket/BasicWebServer/nc/

29

Stateful User-server Interaction: Cookies

Goal: no explicit application
level session

q Server sends “cookie” to
client in response msg
o Set-cookie: 1678453

q Client presents cookie in
later requests
o Cookie: 1678453

q Server matches
presented-cookie with
server-stored info
o authentication
o remembering user

preferences, previous
choices

client server

usual http request msg
usual http response +
Set-cookie: #

usual http request msg
Cookie: #

usual http response msg

usual http request msg
Cookie: #

usual http response msg

cookie-
specific
action

cookie-
specific
action

30

Authentication of Client Request

Authentication goal: control
access to server documents

q stateless: client must present
authorization in each request

q authorization: typically name,
password
o Authorization: header

line in request
o if no authorization

presented, server refuses
access, sends
WWW-authenticate:

header line in response

client server

usual http request msg
401: authorization req.
WWW-authenticate:

usual http request msg
+ Authorization:line

usual http response msg

usual http request msg
+ Authorization:line

usual http response msg time

Browser caches name & password so
that user does not have to repeatedly enter it.

31

Example: Amazon S3

q Amazon S3 API
o http://docs.aws.amazon.com/AmazonS3/latest/API

/APIRest.html

32

HTTP as the Thin Waist

HTTP

Ethernet Cable/DSLWireless

TCP UDP

WebMail WebApp…

33

Protocol Flow of Basic HTTP/1.0

q >= 2 RTTs per object:
o TCP handshake --- 1 RTT
o client request and server

responds --- at least 1 RTT
(if object can be contained
in one packet)

TCP SYN

TCP/ACK; HTTP GET

TCP ACK

base page

TCP SYN

TCP/ACK; HTTP GET

TCP ACK

image 1

34

Outline

q Admin and recap
q HTTP/1.0
Ø HTTP “acceleration”

35

Substantial Efforts to Speedup Basic HTTP/1.0

q Reduce the number of objects fetched [Browser cache]

q Reduce data volume [Compression of data]
q Header compression [HTTP/2]

q Reduce the latency to the server to fetch the content [Proxy cache]
q Remove the extra RTTs to fetch an object [Persistent HTTP, aka

HTTP/1.1]

q Increase concurrency [Multiple TCP connections]
q Asynchronous fetch (multiple streams) using a single TCP [HTTP/2]

q Server push [HTTP/2]

36

Browser Cache and Conditional GET

q Goal: don’t send object if
client has up-to-date stored
(cached) version

q client: specify date of
cached copy in http request
If-modified-since:

<date>

q server: response contains
no object if cached copy up-
to-date:
HTTP/1.0 304 Not

Modified

client server

http request msg
If-modified-since:

<date>

http response
HTTP/1.0

304 Not Modified

object
not

modified

http request msg
If-modified-since:

<date>

http response
HTTP/1.1 200 OK

…
<data>

object
modified

37

Web Caches (Proxy)

Goal: satisfy client request without involving origin server

client

Proxy
server

client

http request

http request

http response

http
 response

http request

http
 response

http requesthttp response

origin
server

origin
server

38

Two Types of Proxies
http://www.celinio.net/techblog/?p=1027

Typically
in the same
network as
the client

Typically in
the same

network as
the server

39

Benefits of Forward Proxy

Assume: cache is “close”
to client (e.g., in same
network)

q smaller response time:
cache “closer” to
client

q decrease traffic to
distant servers
o link out of

institutional/local ISP
network often is
bottleneck

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

40

No Free Lunch: Problems of Web Caching

q The major issue of web caching is how to
maintain consistency

q Two ways
o pull

• Web caches periodically pull the web server to see if
a document is modified

o push
• whenever a server gives a copy of a web page to a web

cache, they sign a lease with an expiration time; if the
web page is modified before the lease, the server
notifies the cache

