Network Applications: HTTP/1.0/1.1/2

Qiao Xiang, Congming Gao, Qiang Su

https://sngroup.org.cn/courses/cnnsxmuf25/index.shtml

09/30/2025

Outline

- □ Admin. and recap
- □ Network applications (continue)
 - > File transfer (FTP) and extension
 - > HTTP

Recap: FTP

- Transfer files to/from remote host
- Client/server model
 - client: side that initiates transfer (either to/from remote)
 - o server: remote host
- □ ftp: RFC 959
- ftp server: port 21/20 (smtp 25, http 80)

FTP: A Client-Server Application with Separate Control, Data Connections

- □ Two types of TCP connections opened:
 - A control connection: exchange commands, responses between client, server.
 "out of band control"
 - Data connections: each for file data to/from server

Discussion: why does FTP separate control/data connections?

Q: How to create a new data connection?

Traditional FTP: Client Specifies Port for Data Connection

Problem of the Client PORT Approach

Many Internet
 hosts are behind
 NAT/firewalls that
 block connections
 initiated from
 outside

FTP PASV: Server Specifies Data Port, Client Initiates Connection

Outline

- Admin. and recap
- Network application programming
 - UDP sockets
 - TCP sockets
- □ Network applications (continue)
 - > File transfer (FTP) and extension
 - > HTTP

From Opaque Files to Web Pages

- Web page:
 - o authored in HTML
 - addressed by a URL
 - URL has two components:
 - host name, port number and
 - path name

http://qiaoxiang.me:80/index.html

- Most Web pages consist of:
 - base HTML page, and
 - several referenced objects
 - ∘ E.g., image

User agent: Firefox

The Web pages are requested through HTTP: hypertext transfer protocol

HTTP is Still Evolving

HTTP 1.0 Message Flow

- Server waits for requests from clients
- Client initiates TCP connection (creates socket) to server, port 80
- □ Client sends request for a document
- □ Web server sends back the document
- TCP connection closed
- Client parses the document to find embedded objects (images)
 - repeat above for each image

HTTP 1.0 Message Flow (more detail)

- Suppose user enters URL qiaoxiang.me/index.html
 - 1a. http client initiates TCP connection to http server (process) at qiaoxiang.me. Port 80 is default for http server.
 - 2. http client sends http

request message (containing URL) into TCP connection socket 0. http server at host qiaoxiang.me waiting for TCP connection at port 80.

- 1b. server "accepts" connection, ack. client
- 3. http server receives request message, forms response *message* containing requested object (index.html), sends message into socket (the sending speed increases slowly, which is called slow-start)

HTTP 1.0 Message Flow (cont.)

4. http server closes TCP connection.

5. http client receives response message containing html file, parses html file, finds embedded image

6. Steps 1-5 repeated for each of the embedded images

Basic HTTP Server Workflow

128.36.232.5 128.36.230.2

<u>TCP socket space</u>

state: listening
address: {*.6789, *.*}
completed connection queue:
sendbuf:

state: established

address: {128.36.232.5:**6789**, 198.69.10.10.**1500**}

sendbuf: recvbuf:

recvbuf:

state: listening address: {*.25, *.*}

completed connection queue:

sendbuf: recvbuf:

Example Code

- See BasicWebServer.java
- □ Try using telnet and real browser, and fetch
 - o file1.html
 - o index.html

what difference in behavior?

Static -> Dynamic Content

Outline

- Admin and recap
- □ HTTP/1.0
 - o Basic design
 - > Dynamic content

Dynamic Content Pages

- □ There are multiple approaches to make dynamic web pages:
 - Embed code into pages (server side include)
 - · http server includes an interpreter for the type of pages
 - Invoke external programs (http server is agnostic to the external program execution)
 - E.g., Common Gateway Interface (CGI)

```
http://www.cs.yale.edu/index.shtml
http://www.cs.yale.edu/cgi-bin/ureserve.pl
http://www.google.com/search?q=Yale&sourceid=chrome
```

Example SSI

See programming/examples-javasocket/BasicWebServer/ssi/index.shtml, header.shtml, ...

Example SSI

See programming/examples-javasocket/BasicWebServer/ssi/index.shtml, header.shtml, ...

- □ To enable ssi, need configuration to tell the web server (see conf/apache-htaccess)
 - https://httpd.apache.org/docs/2.2/howto/htaccess.
 html (Server Side Includes example)

CGI: Invoking External Programs

■ Two issues

- Input: Pass HTTP request parameters to the external program
- Output: Redirect external program output to socket

Example: Typical CGI Implementation

- Starts the executable as a child process
 - Passes HTTP request as environment variables
 - http://httpd.apache.org/docs/2.2/env.html
 - CGI standard: http://www.ietf.org/rfc/rfc3875
 - Redirects input/output of the child process to the socket

Example: CGI

■ Example:

- o GET /search?q=Yale&sourceid=chrome HTTP/1.0
- setup environment variables, in particular \$QUERY_STRING=q=Yale&sourceid=chrome
- start search and redirect its input/output

https://docs.oracle.com/javase/7/docs/api/java/lang/ProcessBuilder.html

https://httpd.apache.org/docs/2.2/howto/htaccess.html (CGI Example)

Example

http://172.28.229.215/BasicWebServer/cgi/price.cgi?appl

```
#!/usr/bin/perl -w
$company = $ENV{'QUERY_STRING'};
print "Content-Type: text/html\r\n";
print "\r\n";
print "<html>";
print "<h1>Hello! The price is ";
if (sep = \frac{-\sqrt{appl}}{}
 my $var_rand = rand();
 print 450 + 10 * $var_rand;
} else {
 print "150";
print "</h1>";
print "</html>";
```

Client Using Dynamic Pages

 See ajax.html and wireshark for client code example

http://172.28.229.215/BasicWebServer/cgi/ajax.html

Discussions

■ What features are missing in HTTP that we have covered so far?

HTTP: POST

☐ If an HTML page contains forms or parameter too large, they are sent using POST and encoded in message body

HTTP: POST Example

POST /path/script.cgi HTTP/1.0

User-Agent: MyAgent

Content-Type: application/x-www-form-urlencoded

Content-Length: 15

item1=A&item2=B

Example using nc: programming/examples-java-socket/BasicWebServer/nc/

Stateful User-server Interaction: Cookies

Goal: no explicit application level session

- Server sends "cookie" to client in response msg
 - Set-cookie: 1678453
- Client presents cookie in later requests
 - o Cookie: 1678453
- Server matches
 presented-cookie with
 server-stored info
 - authentication
 - remembering user preferences, previous choices

<u>Authentication of Client Request</u>

Authentication goal: control access to server documents

- stateless: client must present authorization in each request
- authorization: typically name, password
 - Authorization: header line in request
 - if no authorization presented, server refuses access, sends

WWW-authenticate:

header line in response

client server usual http request msg 401: authorization req. WWW-authenticate: usual http request msg + Authorization: line usual http response msg usual http request msg + Authorization: line time usual http response msg

Browser caches name & password so that user does not have to repeatedly enter it.

Example: Amazon 53

- ☐ Amazon S3 API
 - http://docs.aws.amazon.com/AmazonS3/latest/API /APIRest.html

HTTP as the Thin Waist

Protocol Flow of Basic HTTP/1.0

- ⇒ ≥ 2 RTTs per object:
 - TCP handshake --- 1 RTT
 - client request and server responds --- at least 1 RTT (if object can be contained in one packet)

Outline

- Admin and recap
- □ HTTP/1.0
- > HTTP "acceleration"

Substantial Efforts to Speedup Basic HTTP/1.0

- Reduce the number of objects fetched [Browser cache]
- Reduce data volume [Compression of data]
- Header compression [HTTP/2]
- Reduce the latency to the server to fetch the content [Proxy cache]
- □ Remove the extra RTTs to fetch an object [Persistent HTTP, aka HTTP/1.1]
- Increase concurrency [Multiple TCP connections]
- Asynchronous fetch (multiple streams) using a single TCP [HTTP/2]
- Server push [HTTP/2]

Browser Cache and Conditional GET

- Goal: don't send object if client has up-to-date stored (cached) version
- server: response contains no object if cached copy upto-date:

HTTP/1.0 304 Not Modified

Web Caches (Proxy)

Goal: satisfy client request without involving origin server

http://www.celinio.net/techblog/?p=1027

Two Types of Proxies

Benefits of Forward Proxy

- Assume: cache is "close" to client (e.g., in same network)
- smaller response time: cache "closer" to client
- decrease traffic to distant servers
 - link out of institutional/local ISP network often is bottleneck

No Free Lunch: Problems of Web Caching

- The major issue of web caching is how to maintain consistency
- □ Two ways
 - o pull
 - Web caches periodically pull the web server to see if a document is modified
 - o push
 - whenever a server gives a copy of a web page to a web cache, they sign a lease with an expiration time; if the web page is modified before the lease, the server notifies the cache