Network Layer: Distance Vector Protocols Variations

Qiao Xiang, Congming Gao, Qiang Su

https://sngroup.org.cn/courses/cnnsxmuf25/index.shtml

11/20/2025

Outline

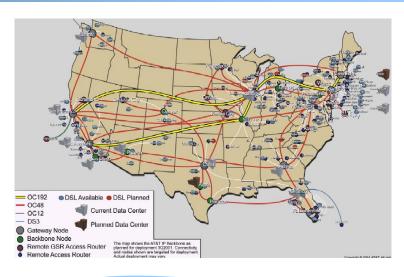
- Admin and recap
- Network overview
- □ Network control plane
 - Routing
 - Link weights assignment
 - Routing computation
 - Distance vector protocols (distributed computing)
 - Link state protocols (distributed state synchronization)

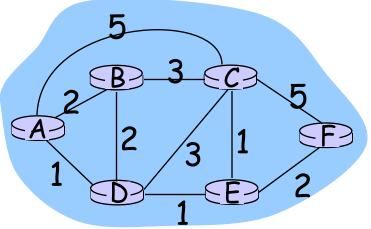
Recap: Routing Context

Routing

Goal: determine "good" paths (sequences of routers) thru networks from source to dest.

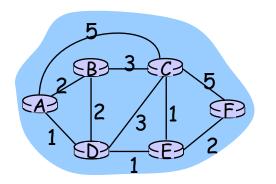
- Often depends on a graph abstraction:
- graph nodes are routers
- graph edges are physical links
 - links have properties: delay, capacity, \$ cost, policy





Recap: Routing Design Space

- Routing has a large design space
 - who decides routing?
 - source routing: end hosts make decision
 - network routing: networks make decision
 - o how many paths from source s to destination d?
 - · multi-path routing
 - single path routing
 - what does routing compute?
 - network cost minimization (shortest path routing)
 - · QoS aware
 - will routing adapt to network traffic demand?
 - adaptive routing
 - static routing



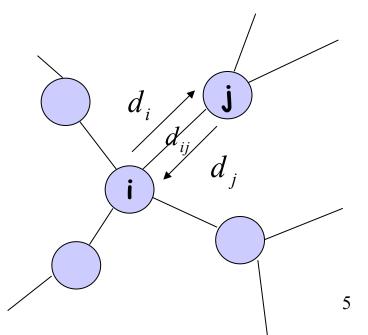
Recap: Distance Vector Routing: Basic Idea (Bellman-Ford Alg)

☐ At node i, the basic update rule

$$d_i = \min_{j \in N(i)} (d_{ij} + d_j)$$

where

- d_i denotes the distance estimation from i to the destination,
- N(i) is set of neighbors of node i, and
- d_{ij} is the distance of the direct link from i to j

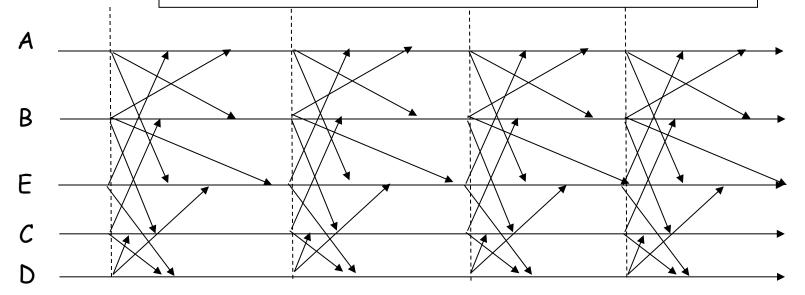


Recap: Synchronous Bellman-Ford (SBF)

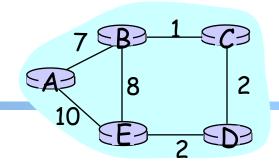
■ Nodes update in rounds:

- there is a global clock;
- at the beginning of each round, each node sends its estimate to all of its neighbors;
- o at the end of the round, updates its estimation

$$d_i(h+1) = \min_{j \in N(i)} (d_{ij} + d_j(h))$$



Recap: SBF/∞

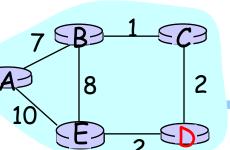


□ Initialization (time 0):

$$d_i(0) = \begin{cases} 0 & i = \text{dest} \\ \infty & \text{otherwise} \end{cases}$$

Example

$$d_i(h+1) = \min_{j \in N(i)} (d_{ij} + d_j(h))$$



Consider D as destination; d(t) is a vector consisting of estimation of each node at round t

	Α	В	С	Е	D	
d(0)	∞	∞	∞	∞	0	
d(1)	∞	∞	2	2	0	
d(2)	12	3	2	2	0	
d(3)	10	3	2	2	0	
d(4)	10	3	2	2	0	

Observation: $d(0) \ge d(1) \ge d(2) \ge d(3) \ge d(4) = d^*$

$$d_i(h+1) = \min_{j \in N(i)} (d_{ij} + d_j(h))$$

A Nice Property of SBF: Monotonicity

Consider two configurations d(t) and d'(t)

- \Box If $d(t) \ge d'(t)$
 - i.e., each node has a higher estimate in one scenario (d) than in another scenario (d'),
- \Box then $d(t+1) \ge d'(t+1)$
 - i.e., each node has a higher estimate in d than in d' after one round of synchronous update.

$$d_i(h+1) = \min_{j \in N(i)} (d_{ij} + d_j(h))$$

Correctness of SBF/∞

- □ Claim: d_i (h) is the length L_i (h) of a shortest path from i to the destination using \leq h hops
 - base case: h = 0 is trivially true
 - o assume true for \leq h, i.e., L_i (h) = d_i (h), L_i (h-1) = d_i (h-1), ...

$$d_i(h+1) = \min_{j \in N(i)} (d_{ij} + d_j(h))$$

Correctness of SBF/∞

 \square consider \leq h+1 hops:

$$L_i(h+1) = \min(L_i(h), \min_{j \in N(i)}(d_{ij} + L_j(h)))$$

= min(
$$d_i(h)$$
, min $_{j \in N(i)}(d_{ij} + d_j(h))$)

$$= \min(d_i(h), d_i(h+1))$$

since $d_i(h) \leq d_i(h-1)$

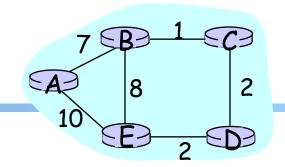
$$d_i(h+1) = \min_{j \in N(i)} (d_{ij} + d_j(h)) \le \min_{j \in N(i)} (d_{ij} + d_j(h-1)) = d_i(h)$$

$$L_i(h+1) = d_i(h+1)$$

Outline

- Admin and recap
- Network overview
- □ Network control plane
 - Routing
 - Link weights assignment
 - Routing computation
 - Distributed distance vector protocols
 - synchronous Bellman-Ford (SBF)
 - SBF/∞
 - SBF/-1 SBF/∞

SBF at another Initial Configuration: SBF/-1

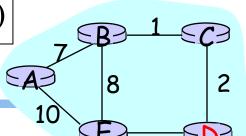


□ Initialization (time 0):

$$d_i(0) = \begin{cases} 0 & i = \text{dest} \\ -1 & \text{otherwise} \end{cases}$$

Example

$$d_i(h+1) = \min_{j \in N(i)} (d_{ij} + d_j(h))$$



Consider D as destination

	Α	В	С	E	D
d(0)	-1	-1	-1	-1	0
d(1)	6	0	0	2	0
d(2)	7	1	1	2	0
d(3)	8	2	2	2	0
d(4)	9	3	3	2	0
d(5)	10	3	3	2	0
d(6)	10	3	3	2	0

Observation: $d(0) \le d(1) \le d(2) \le d(3) \le d(4) \le d(5) = d(6) = d^*$

Correctness of SBF/-1

□SBF/-1 converges due to monotonicity

- Remaining question:
 - Can we guarantee that SBF/-1 converges to shortest path?

Correctness of SBF/-1

ightharpoonup Common between SBF/ ∞ and SBF/-1: they solve the Bellman equation

$$d_i = \min_{j \in N(i)} (d_{ij} + d_j)$$

where $d_D = 0$.

- $lue{}$ We have proven SBF/ ∞ is the shortest path solution.
- □ SBF/-1 computes shortest path if Bellman equation has a unique solution.

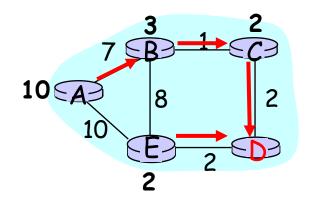
$$d_i = \min_{j \in N(i)} (d_{ij} + d_j)$$

Uniqueness of Solution to BE

Assume another solution d, we will show that d = d*

case 1: we show $d \ge d^*$

Since d is a solution to BE, we can construct paths as follows: for each i, pick a j which satisfies the equation; since d^* is shortest, $d \ge d^*$



$$d_i = \min_{j \in N(i)} (d_{ij} + d_j)$$

Uniqueness of Solution to BE

Case 2: we show d ≤ d*

assume we run SBF with two initial configurations:

- o one is d
- \circ another is SBF/ ∞ (d $^{\infty}$),
- -> monotonicity and convergence of SBF/∞ imply that d ≤ d*

Discussion

■ Will SBF converge under other non-negative initial conditions?

Problems of running synchronous BF?

Outline

- Admin and recap
- Network overview
- □ Network control plane
 - Routing
 - Link weights assignment
 - Routing computation
 - Distributed distance vector protocols
 - synchronous Bellman-Ford (SBF)
 - asynchronous Bellman-Ford (ABF)

Asynchronous Bellman-Ford (ABF)

- No notion of global iterations
 - each node updates at its own pace
- Asynchronously each node i computes

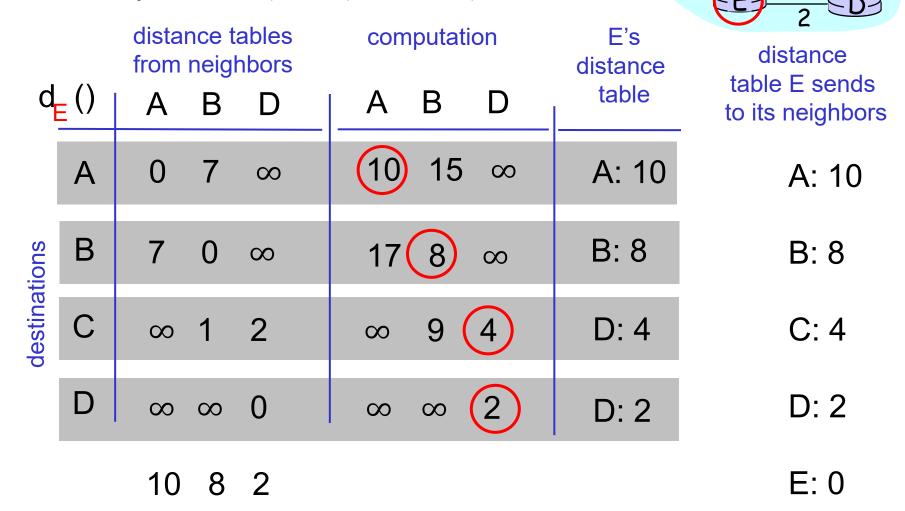
$$d_i = \min_{j \in N(i)} (d_{ij} + d_j^i)$$

using last received value dij from neighbor j.

- Asynchronously node j sends its estimate to its neighbor i:
 - We assume that there is an upper bound on the delay of estimate packet

ABF: Example

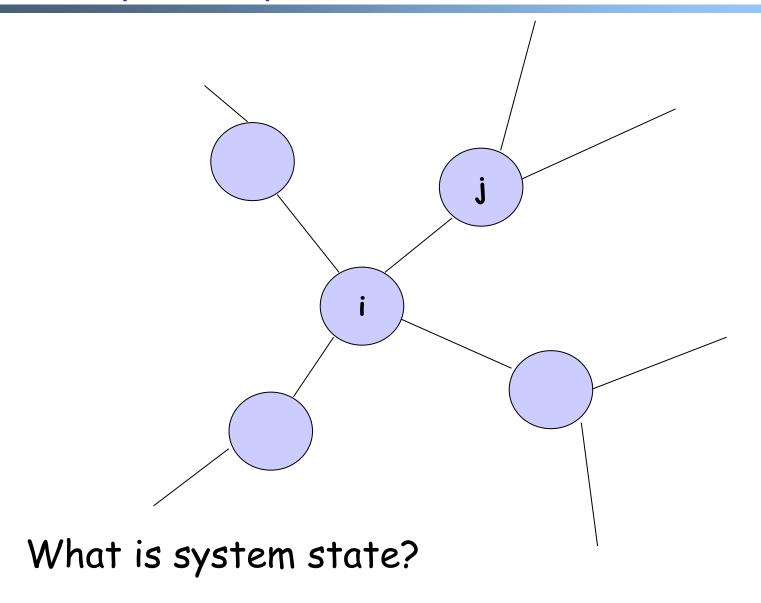
Below is just one step! The protocol repeats forever!



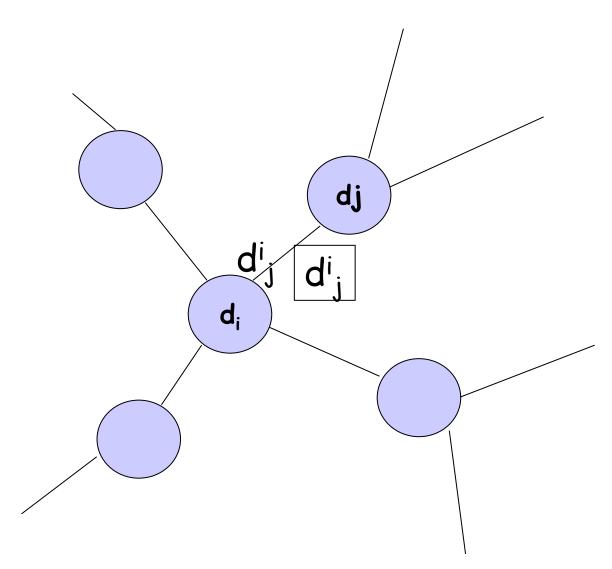
Asynchronous Bellman-Ford (ABF)

- □ ABF will eventually converge to the shortest path
 - links can go down and come up but if topology is stabilized after some time t and connected, ABF will eventually converge to the shortest path!

ABF Convergence Proof Complexity: Complex System State



System State



three types of distance state from node j:

- d_j: current distance estimate state at node j

- dⁱ_j: last d_j that neighbor i received

- d_j : those d_j that are still in transit to neighbor i

ABF Convergence Proof: The Sandwich Technique

□Basic idea:

 bound system state using extreme states

□Extreme states:

- \circ SBF/∞; call the sequence U()
- SBF/-1; call the sequence L()

ABF Convergence

Consider the time when the topology is stabilized as time 0

- □ U(0) and L(0) provide upper and lower bounds at time 0 on all corresponding elements of states
 - L_j (0) ≤ d_j ≤ U_j (0) for all d_j state at node j
 - o $L_{j}(0) \le d_{j}^{i} \le U_{j}(0)$
 - \circ $L_{j}(0) \le update messages <math>d_{j}^{i} \le U_{j}(0)$

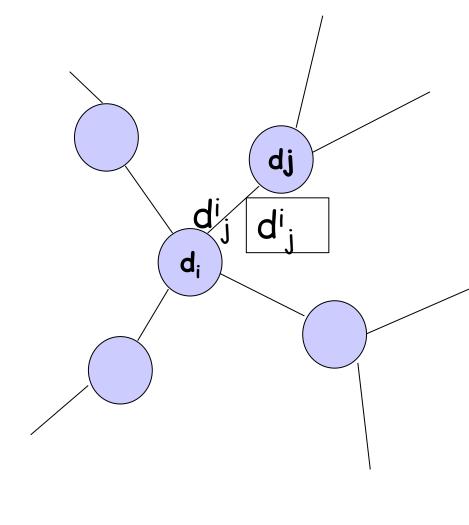
ABF Convergence

 $\Box d_j$

after at least one update at node j:
 d_j falls between
 L_j (1) ≤ d_j ≤ U_j (1)

$\Box d^{i}_{j}$:

• eventually all d_j^i that are only bounded by L_j (0) and U_j (0) are replaced with in L_j (1) and U_j (1)



Asynchronous Bellman-Ford: Summary

Distributed

 each node communicates its routing table to its directly-attached neighbors

□ Iterative

 continues periodically or when link changes, e.g. detects a link failure

Asynchronous

 nodes need not exchange info/iterate in lock step!

Convergence

 in finite steps, independent of initial condition if network is connected

Summary: Distributed Distance-Vector

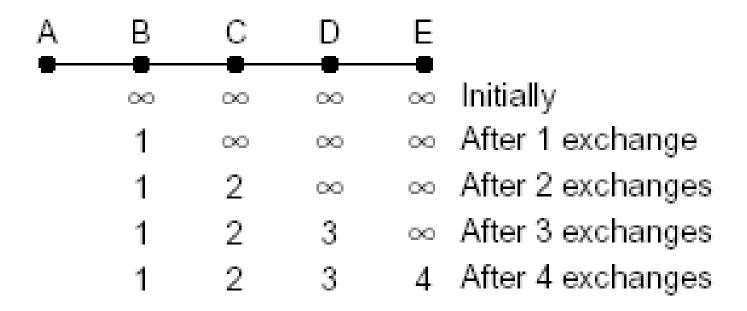
- □ Tool box: a key technique for proving convergence (liveness) of distributed protocols: monotonicity and bounding-box (sandwich) design
 - Consider two configurations d(t) and d'(t):
 - if d(t) <= d'(t), then d(t+1) <= d'(t+1)
 - Identify two extreme configurations to sandwich any real configurations

Outline

- Admin and recap
- □ Network control plane
 - Routing
 - Link weights assignment
 - Routing computation
 - Distance vector protocols (distributed computing)
 - synchronous Bellman-Ford (SBF)
 - asynchronous Bellman-Ford (ABF)
 - properties of DV

Properties of Distance-Vector Algorithms

□ Good news propagate fast



Properties of Distance-Vector Algorithms

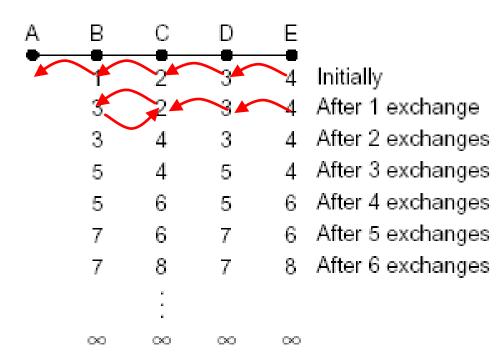
□ Bad news propagate slowly

Α	В	С	D	E	
•	-	-	-	-	
	1	2	3	4	Initially
A-B link down	3	2	3	4	After 1 exchange
	3	4	3	4	After 2 exchanges
	5	4	5	4	After 3 exchanges
	5	6	5	6	After 4 exchanges
	7	6	7	6	After 5 exchanges
	7	8	7	8	After 6 exchanges
	∞	00	œ	∞	

- This is called the counting-to-infinity problem
- Q: what causes counting-to-infinity?

Counting-To-Infinity is Because of Routing Loop

Counting-to-infinity is caused by a routing loop, which is a global state (consisting of the nodes' local states) at a global moment (observed by an oracle) such that there exist nodes A, B, C, ... E such that A (locally) thinks B as next hop, B thinks C as next hop, ... E thinks A as next hop



Discussion

- Why avoid routing loops is hard?
- □ Any proposals to avoid routing loops?

Outline

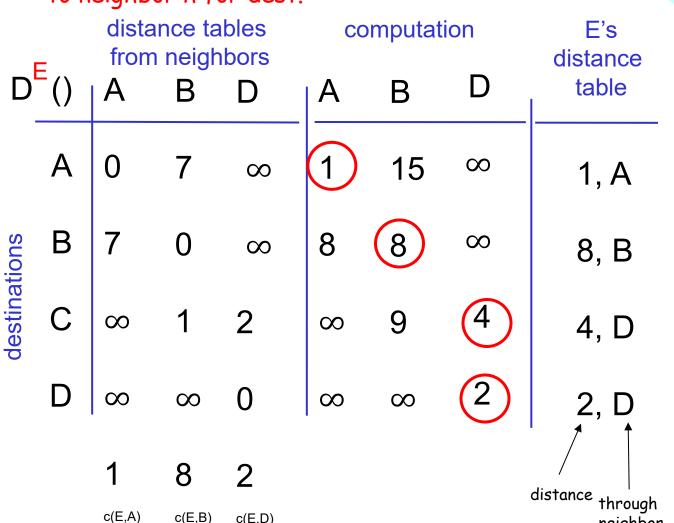
- Admin and recap
- □ Network control plane
 - Routing
 - Link weights assignment
 - Routing computation
 - Distance vector protocols (distributed computing)
 - synchronous Bellman-Ford (SBF)
 - asynchronous Bellman-Ford (ABF)
 - properties of DV
 - DV w/ loop prevention
 - > reverse poison

The Reverse-Poison (Split-horizon) Hack

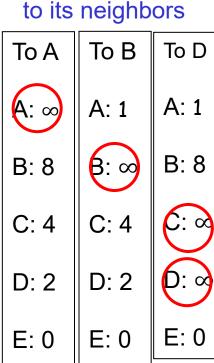
c(E,B)

c(E,D)

If the path to dest is through neighbor h, report ∞ to neighbor h for dest.



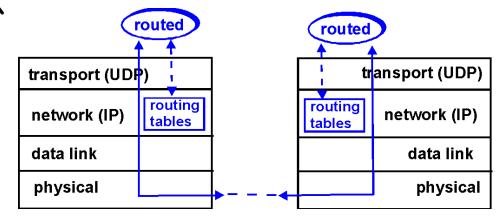
distance table E sends



neighbor

DV+RP => RIP (Routing Information Protocol)

- Included in BSD-UNIX Distribution in 1982
- □ Link cost: 1
- Distance metric: # of hops
- Distance vectors



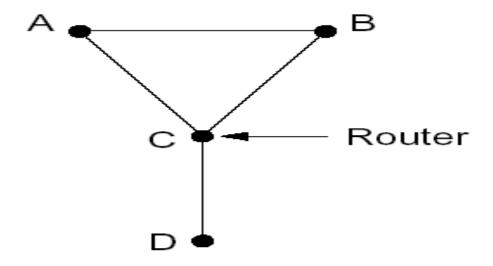
- exchanged every 30 sec via Response Message (also called advertisement) using UDP
- o each advertisement: route to up to 25 destination nets

RIP: Link Failure and Recovery

- If no advertisement heard after 180 sec --> neighbor/link declared dead
 - routes via neighbor invalidated
 - new advertisements sent to neighbors
 - neighbors in turn send out new advertisements (if tables changed)
 - link failure info quickly propagates to entire net
 - reverse-poison used to prevent ping-pong loops
 - set infinite distance = 16 hops (why?)

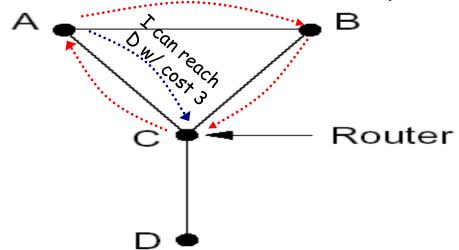
General Routing Loops and Reverse-poison

Exercise: Can Reverse-poison guarantee no loop for this network?



General Routing Loops and Reverse-poison

Reverse-poison removes two-node loops but may not remove more-node loops



- Unfortunate timing can lead to a loop
 - When the link between C and D fails, C will set its distance to D as ∞
 - A receives the bad news (∞) from C, A will use B to go to D
 - A sends the news to C
 - C sends the news to B

Outline

- Admin and recap
- Network control plane
 - Routing
 - Link weights assignment
 - Routing computation
 - Distance vector protocols (distributed computing)
 - synchronous Bellman-Ford (SBF)
 - asynchronous Bellman-Ford (ABF)
 - properties of DV
 - DV w/ loop prevention
 - reverse poison
 - destination-sequenced DV (DSDV)

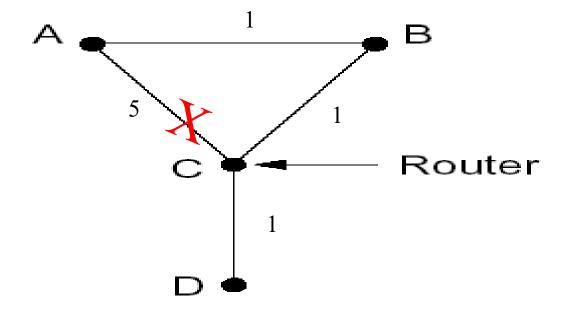
<u>Destination-Sequenced</u> <u>Distance Vector protocol (DSDV)</u>

- Basic idea: use sequence numbers to partition computation
 - o tags each route with a sequence number
 - each destination node D periodically advertises
 monotonically increasing even-numbered sequence numbers
 - when a node realizes that the link it uses to reach destination D is broken, it advertises an infinite metric and a sequence number which is one greater than the previous route (i.e., an odd seq. number)
 - the route is repaired by a later even-number advertisement from the destination

DSDV: More Detail

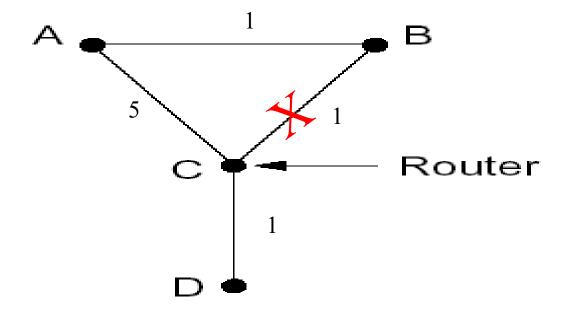
- Let's assume the destination node is D
- □ There are optimizations but we present a simple version:
 - each node B maintains (S^B, d^B), where S^B is the sequence number at B for destination D and d^B is the best distance using a neighbor from B to D
- Both periodical and triggered updates
 - periodically: D increases its seq. by 2 and broadcasts with (5^D, 0)
 - if B is using C as next hop to D and B discovers that C is no longer reachable
 - B increases its sequence number S^B by 1, sets d^B to ∞ , and sends (S^B, d^B) to all neighbors

Example



Will this trigger an update?

Example



Will this trigger an update?

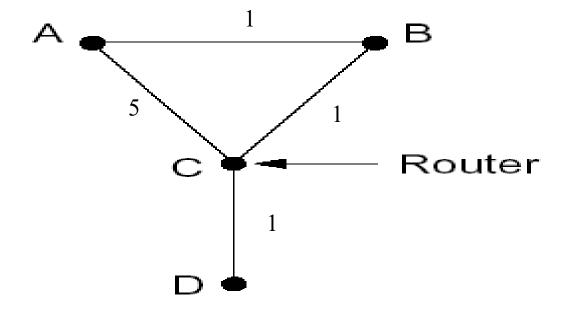
route update

DSDV: Update Alg.

- Consider simple version, no optimization
- Update after receiving a message
 - \circ assume B sends to A its current state (S^B, d^B)
 - $_{\circ}$ when A receives (S^B, d^B)

```
-if S^B > S^A, then
  // always update if a higher seq#
    SA = SB
    \Rightarrow if (d^B == \infty) d^A = \infty; else d^A = d^B + d(A,B)
- else if S^A == S^B, then
    \Rightarrow if d^{A} > d^{B} + d(A,B)
      // update for the same seq# only if better route
         d^{A}=d^{B}+d(A,B) and uses B as next hop
```

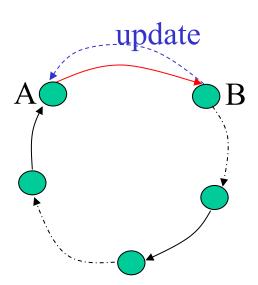
Example



Exercise: update process after D increases its seq# to next even number.

Claim: DSDV will NEVER Form a Loop

- □ Initially no loop (no one has next hop so no loop)
- Derive contradiction if a loop forms after a node processes an update,
 - e.g., when A receives the update from B, A decides to use B as next hop and forms a loop



Technique: Global Invariants

- Global Invariant is a very effective method in understanding safety of distributed asynchronous protocols
- □ Invariants are defined over the states of the distributed nodes

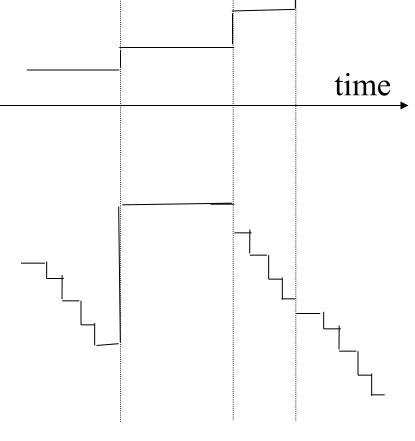
- Consider any node B.
- Let's identify some invariants over the state of node B, i.e., (S^B, d^B) .

Invariants of a Single Node B

□ Some invariants about the state of a node B

• [I1] S^B is non-decreasing

 [I2] d^B is non-increasing for the same sequence number



Invariants of if A Considers B as Next Hop

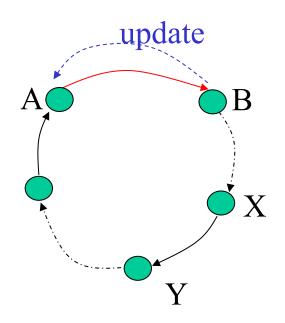
Some invariants if A considers B as next hop

- \circ [I3] d^A is not ∞
- [I4] S^B>= S^A
 because A is having the seq# which B last sent to A; B's seq# might be increased after B sent its state
 - [I5] if SB == SA
 - then $d^B < d^A$ because d^A is based on d^B which B sent to A some time ago, $d^B < d^A$ since all link costs are positive; d^B might be decreased after B sent its state

Loop Freedom of DSDV

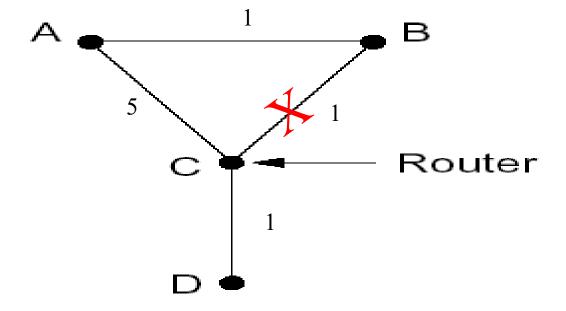
- Consider a critical moment
 - A starts to consider B as next hop, and we have a loop
- According to invariant I4 for each link in the loop
 (X considers Y as next hop):
 S^y >= S^X

- o exists $S^{y} > S^{x}$
 - by transition along the loop $S^B > S^B$



- all nodes along the loop have the same sequence number
 - apply I5, by transition along the loop $d^B > d^B$

Issue of DSDV

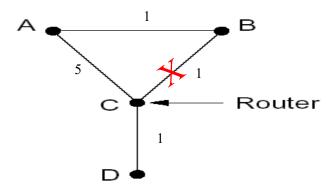


Outline

- Admin and recap
- Network control plane
 - Routing
 - Link weights assignment
 - Routing computation
 - Distance vector protocols (distributed computing)
 - synchronous Bellman-Ford (SBF)
 - asynchronous Bellman-Ford (ABF)
 - properties of DV
 - DV w/ loop prevention
 - reverse poison
 - destination-sequenced DV (DSDV)
 - o diffusive update algorithm (DUAL) and EIGRP

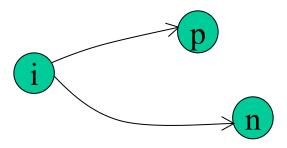
Basic Idea

- DSDV guarantees no loop, but at the price of not using any backup path before destination re-announces reachability.
- Basic idea: Sufficient condition to guarantee no loop using backup paths (called switching)?



Key Idea: Feasible Successors

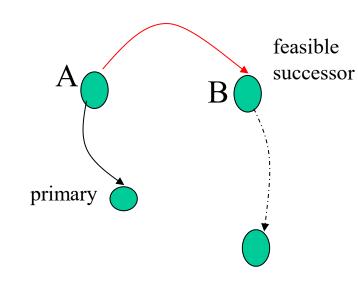
□ If the reported distance of a neighbor n is lower than the total distance using primary (current shortest), the neighbor n is a feasible successor



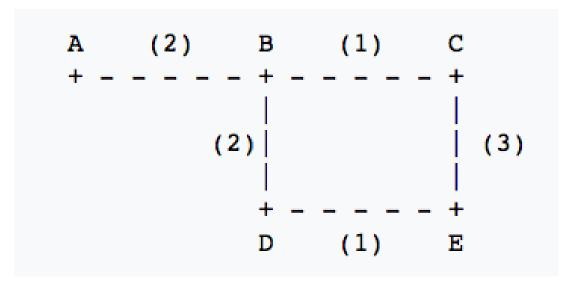
$$d_n + d_{i \to n} \ge d_{\text{primary}} + d_{i \to \text{primary}} > d_n$$

Intuition

□ Since the reported distance of B is lower than my total distance, B cannot be using me (along a path) to reach the destination



Example



□ Assume A is destination, consider E

	Reported Dist.	Total Dist.
Neighbor C	3	6
Neighbor D	4	5

Summary: Distance Vector Routing

Basic DV protocol

- take away: use monotonicity as a technique to understand liveness/convergence
 - highly recommended reading of Bersekas/Gallager chapter

□ Fix counting-to-infinity problem

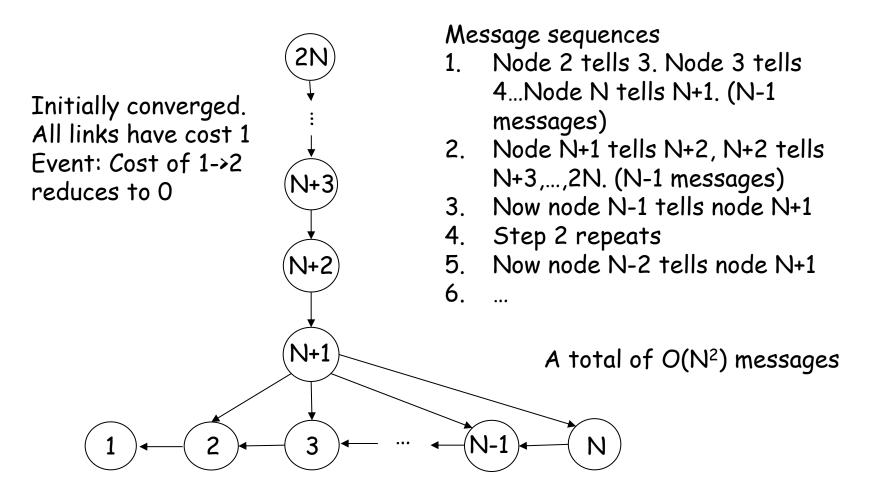
- DSDV
 - Idea: uses sequence number to avoid routing loops
 - seq# partitions routing updates from different outside events
 - within same event, no loop so long each node only decreases its distance
 - Analysis: use global invariants to understand/design safety/no routing loops
- EIRGP (DUAL)
 - · Idea: introduces a sufficient condition for local recovery

<u>Discussion: Distance Vector Routing</u>

What do you like about distributed, distance vector routing?

■ What do you not like about distributed, distance vector routing?

Churns of DV: One Example



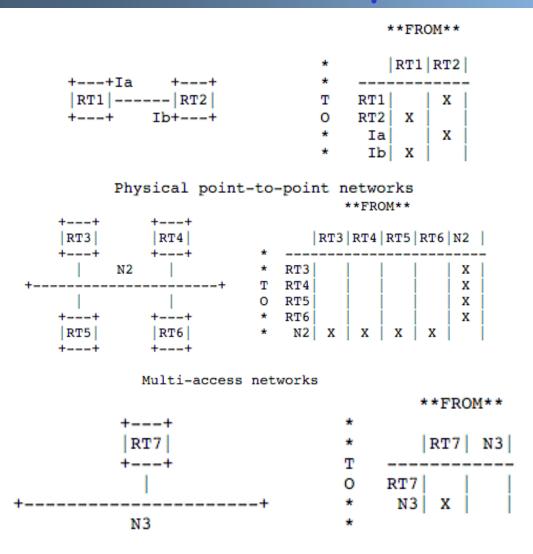
Outline

- Admin and recap
- Network control plane
 - Routing
 - Link weights assignment
 - Routing computation
 - Distance vector protocols (distributed computing)
 - Link state protocols (distributed state synchronization)

Link-State Routing

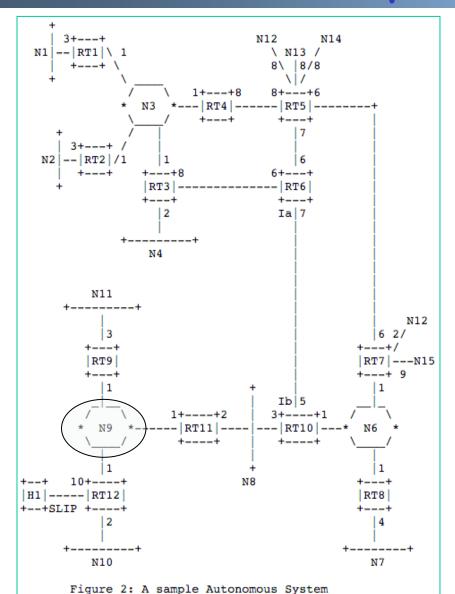
- Basic idea: Not distributed computing, only distributed state distribution
- Net topology, link costs are distributed to all nodes
 - · all nodes have same info
 - Each node computes its shortest paths from itself to all other nodes
 - standard Dijkstra's algorithm as path compute alg
 - Allows multiple same-cost paths
 - Multiple cost metrics per link (for type of service routing)
- Most commonly used routing protocol (e.g., OSPF/ISIS) by most networks in Internet

Example: Link State and Directed Graph (OSPFv2)



Stub multi-access networks

Example: Link State and Directed Graph (OSPFv2)



FROM 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | N3 | N6 | N8 | N9 RT1 RT2 0 RT3 RT4 RT5 RT6 RT7 RT8 RT9 RT10 RT11 0 RT12 N1 | 3 N2 N3 | 1 N4N6 N7 N9 N10 N11N12 N13 N14 N15 H1

Figure 3: The resulting directed graph

Outline

- Admin and recap
- □ Network control plane
 - Routing
 - Link weights assignment
 - Routing computation
 - Distance vector protocols (distributed computing)
 - Link state protocols (distributed state synchronization)
 - data structure to be distributed
 - state distribution protocol

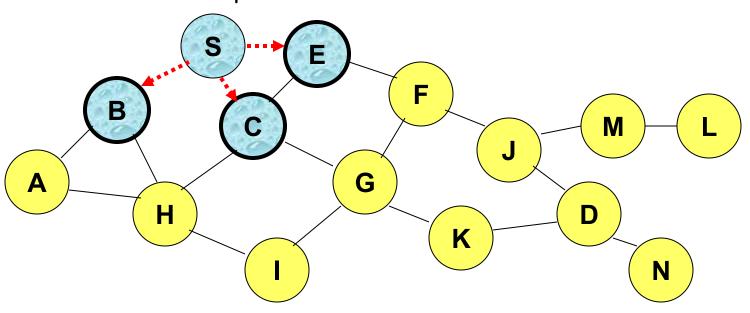
Basic Link State Broadcast Protocol

Basic event structure at node n

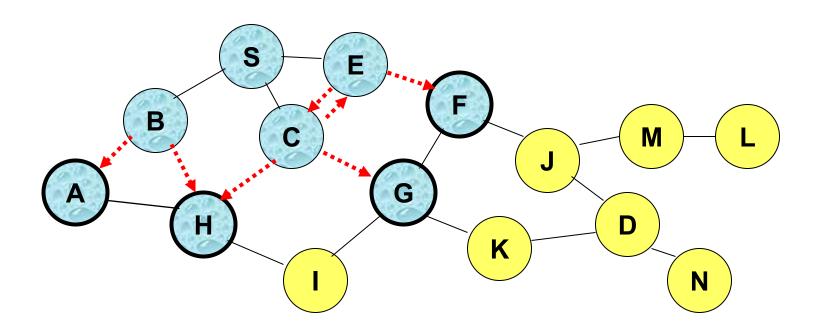
- on initialization:
 - broadcast LSA[e] for each link e connected to n
- on state change to a link e connected to n:
 - broadcast LSA[e] = new status
- on receiving an LSA[e]:
 - if (does not have LSA[e])
 forwards LSA[e] to all links except the incoming link

Link State Broadcast

Node S updates link states connected to it.



Link State Broadcast



To avoid forwarding the same link state announcement (LSA) multiple times (forming a loop), each node remembers the received LSAs.

- Second LSA[S] received by E from C is discarded
- Second LSA[S] received by C from E is discarded as well
- Node H receives LSA[S] from two neighbors, and will discard one of them

Discussion

- □ Issues of the basic link state protocol?
 - Recall: goal is to efficiently distribute to each node to a correct, complete link state map

Link State Broadcast: Issues

- Problem: Out of order delivery
 - link down and then up
 - A node may receive up first and then down

Solution

- Each link update is given a sequence number: (initiator, seq#, link, status)
 - the initiator should increase the seq# for each new update
- If the seq# of an update of a link is not higher than the highest seq# a router has seen, drop the update
- Otherwise, forward it to all links except the incoming link (real implementation using packet buffer)
- Problem of solution: seq# corruption
- Solution: age field (e.g., https://tools.ietf.org/html/rfc1583#page-102)

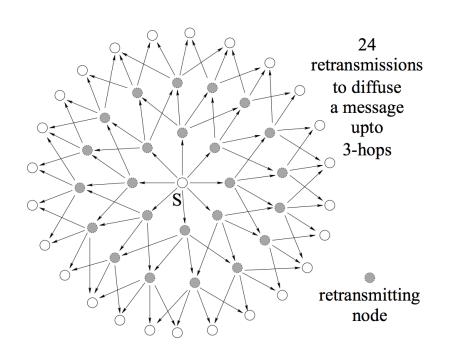
Link State Broadcast: Issues

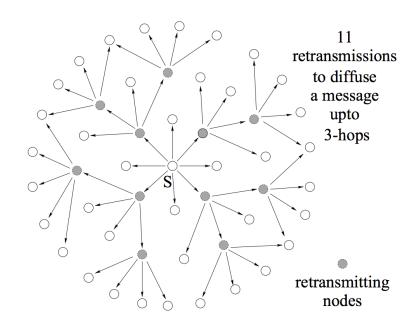
Problem: network partition and then reconnect, how to sync across the reconnected components

Solution: updates are sent periodically

Link State Broadcast: Issues

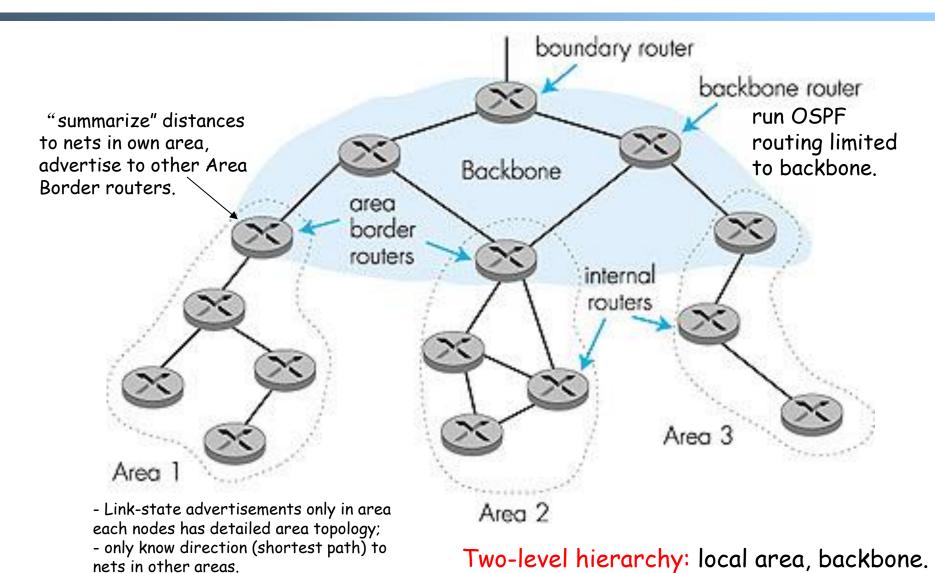
□ Problem: Broadcast redundancy





https://hal.inria.fr/inria-00072756/document

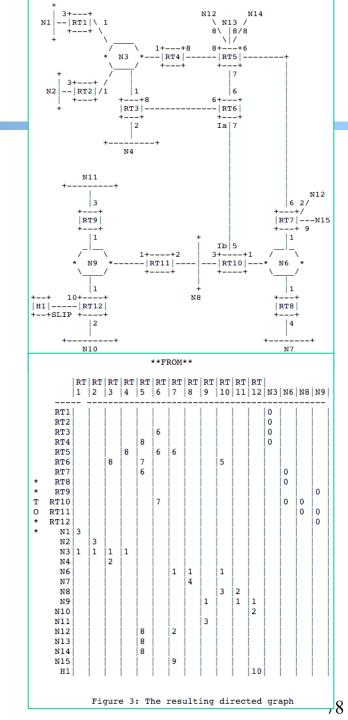
Hierarchical OSPF



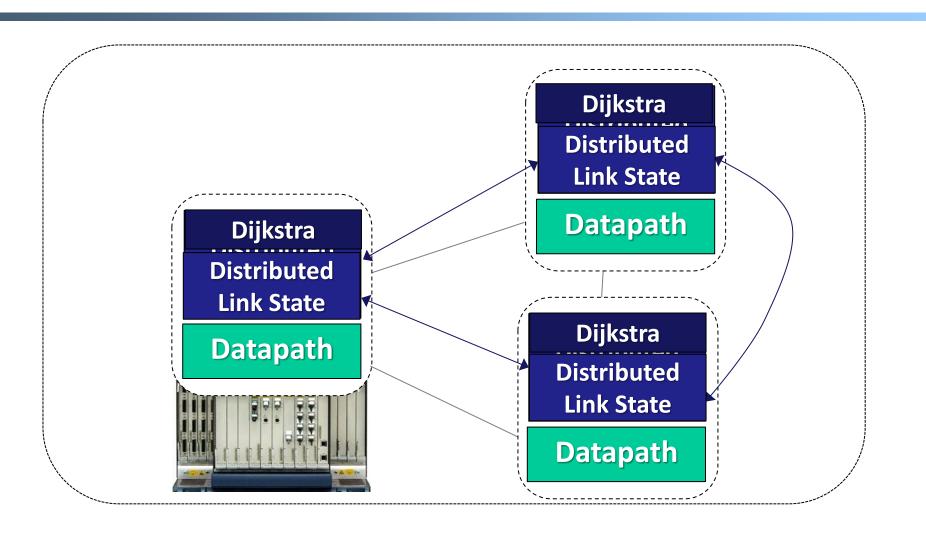
Summary: Link State

Basic LS protocol

- take away: instead of computing routing results using distributed computing, distributed computing is for only link state distribution (synchronization)
- Link state distribution can still have much complexity, e.g., out of order delivery, partition and reconnect, scalability



Roadmap: Routing Computation Architecture Spectrum

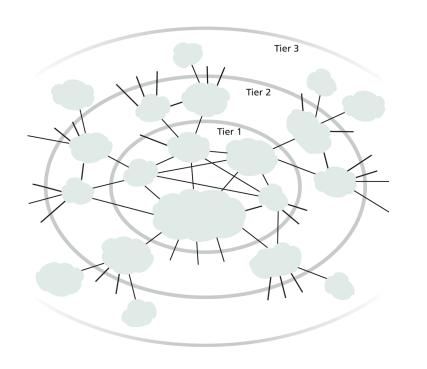


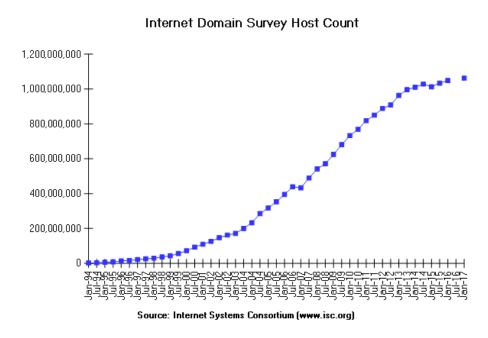
Outline

- Admin and recap
- □ Network control plane
 - Routing
 - Link weights assignment
 - Routing computation
 - Basic routing computation protocols
 - Distance vector protocols (distributed computing)
 - Link state protocols (distributed state synchronization)
 - Global Internet routing

Exercise

Does it work to use DV or LS as we discussed for global Internet routing?



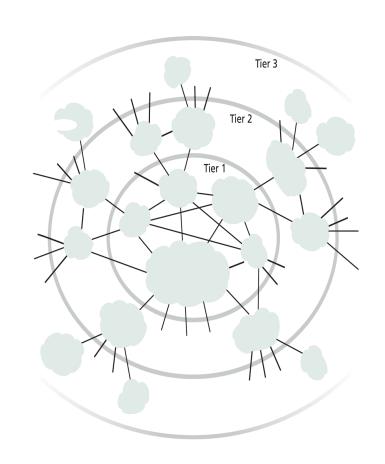


Requirements and Solution of Current Global Internet Routing

- Scalability: handle network size (#devices)
 much higher than typical DV or LS can handle
 - Solution: Introduce new abstraction to reduce network (graph) size
- □ Autonomy: allow each network to have individual preference of routing (full control of its internal routing; control/preference of routing spanning multiple networks)
 - Solution: hierarchical routing and policy routing

New Abstraction: Autonomous Systems (AS)

- □ Abstract each network as an autonomous system (AS), identified by an AS number (ASN)
- Conceptually the global routing graph consists of only autonomous systems as nodes



Routing with Autonomous Systems

- Internet routing is divided into intra-AS routing and inter-AS routing
 - Intra-AS routing (also called intradomain routing)
 - A protocol running insides an AS is called an Interior Gateway Protocol (IGP), each AS can choose its own protocol, such as RIP, E/IGRP, OSPF, IS-IS
 - Inter-AS routing (also called interdomain routing)
 - A protocol runs among autonomous systems is also called an Exterior Gateway Protocol (EGP)
 - The de facto EGP protocol is BGP