Network Applications: Email, DNS

Qiao Xiang, Congming Gao, Qiang Su

https://sngroup.org.cn/courses/cnnsxmuf25/index.shtml

09/11/2025

Outline

- > Admin. and recap
- Layered architecture
 - Internet layering
- Application layer overview
- □ Network applications
 - Email
 - DNS

Recap: Summary of the Taxonomy of Communication Networks

Recap: Circuit Switching vs. Packet Switching

	circuit switching	packet switching
resource usage	use a single partition bandwidth	use whole link bandwidth
reservation/setup	need reservation (setup delay)	no reservation
resource contention	busy signal (session loss)	congestion (long delay and packet losses)
charging	time	packet
header	no per-pkt header	per packet header
fast path processing	fast	per packet processing

Recap: Queueing Theory

- Model system state
- □ Introduce state transition diagram
- Focus on equilibrium: state trend neither growing nor shrinking

Recap: Queueing Theory Analysis of Circuit-Switching

system state: # of busy lines

Recap: Queueing Theory Analysis of Circuit-Switching

system state: # of busy lines

at equilibrium (time reversibility) in one unit time: $\#(\text{transitions k} \rightarrow \text{k+1}) = \#(\text{transitions k+1} \rightarrow \text{k})$

$$p_k \lambda = p_{k+1}(k+1)\mu$$

$$p_{k+1} = \frac{1}{k+1} \frac{\lambda}{\mu} p_k = \frac{1}{(k+1)!} \left(\frac{\lambda}{\mu}\right)^{k+1} p_0$$

$$p_0 = \frac{1}{1 + \frac{1}{1!} \frac{\lambda}{\mu} + \frac{1}{2!} \left(\frac{\lambda}{\mu}\right)^2 + \dots + \frac{1}{N!} \left(\frac{\lambda}{\mu}\right)^N}$$

Recap: Queueing Theory Analysis of Packet Switching

system state: #packets in queue

at equilibrium (time reversibility) in one unit time:

#(transitions $k \rightarrow k+1$) = #(transitions $k+1 \rightarrow k$)

$$p_k \lambda = p_{k+1} \mu$$

$$\sum_{k=0}^{\infty} p_k = 1$$

$$p_{k+1} = \frac{\lambda}{\mu} p_k = \left(\frac{\lambda}{\mu}\right)^{k+1} p_0 = \rho^{k+1} p_0$$

$$p_0 = 1 - \rho$$

$$\rho = \frac{\lambda}{\mu}$$

Recap: Layering

- Why layering
 - o reference model
 - modularization
- Concepts
 - service, interface, and protocol
 - physical vs logical communication
- Key design decision
 - end-to-end argument to place functions in layers

Some Implications of Layered Architecture

A packet as a stack container

□ Each layer needs multiplexing and demultiplexing to serve layer above

The Hourglass Architecture of the Internet

Link Layer (Ethernet)

- Services (to network layer)
 - multiplexing/demultiplexing
 - from/to the network layer
 - o error detection
 - multiple access control
 - arbitrate access to shared medium
- □ Interface
 - send frames to a directly reachable peer

Link Layer: Protocol Header (Ethernet)

Network Layer: IP

- Services (to transport layer)
 - multiplexing/demultiplexing from/to the transport
 - fragmentation and reassembling:
 partition a fragment into smaller packets
 removed in IPv6
 - o error detection
 - routing: best-effort to send packets from source to destination
 - o certain QoS/CoS
 - does not provide reliability or reservation

■ Interface:

 send a packet to a (transport-layer) peer at a specified global destination, with certain QoS/CoS

Network Layer: IPv4 Header

Transport Layer: UDP

- A connectionless service
- Does not provide: connection setup, reliability, flow control, congestion control, timing, or bandwidth guarantee
 - o why is there a UDP?

Transport Services and APIs

- Multiple services and APIs proposed in history
 - XTI (X/Open Transport Interface), a slight modification of the Transport Layer Interface (TLI) developed by AT&T.
- Commonly used transport-layer service model and API: Socket
 - sometimes called "Berkeley sockets" acknowledging their heritage from Berkeley Unix
 - o a socket has a transport-layer local port number
 - · e.g., email (SMTP) port number 25, web port number 80
 - Application can send data into socket, read data out of socket
 - an application process binds to a socket (-a all; -u udp; -n number)
 - %netstat -aun

Socket Service Model and API

Multiplexing/Demultiplexing

Transport Layer: UDP Header

Transport Layer: TCP

Services

- multiplexing/demultiplexing
- reliable transport
 - between sending and receiving processes
 - setup required between sender and receiver: a connectionoriented service
- flow control: sender won't overwhelm receiver
- congestion control: throttle sender when network overloaded
- o error detection
- does not provide timing, minimum bandwidth guarantees

□ Interface:

send a packet to a (app-layer) peer

Transport Layer: TCP Header

Secure Socket Layer Architecture

SSL Record-Layer Packet Format

Summary: The Big Picture of the Internet

Hosts and routers:

- o ~ 1 bil. hosts
- autonomous systems organized roughly hierarchical
- backbone links at 100 Gbps

□ Software:

- datagram switching with virtual circuit support at backbone
- layered network architecture
 - use end-to-end arguments to determine the services provided by each layer
- the hourglass architecture of the Internet

Protocol Formats 15 16 31 16-bit source port number 16-bit destination port number 32-bit sequence number 15 16 31 32-bit acknowledgment number 20 bytes 16-bit destination port number 16-bit source port number 4-bit header reserved 16-bit window size 8 byte length (6 bits) 16-bit UDP length 16-bit UDP checksum 16-bit TCP checksum 16-bit urgent pointer options (if any) data (if any) data (if any) 15 16 31 4-bit header 8-bit type of service 4-bit 16-bit total length (in bytes) length (TOS) version D M F F 0 16-bit identification 13-bit fragment offset 8-bit time to live 8-bit protocol 16-bit header checksum 20 bytes (TTL) 32-bit source IP address 32-bit destination IP address options (if any) data SA Type DA CRC Data 2 46-1500 6 6 4 Ethernet frame

Minimum size = 64 bytes

Outline

- Admin. and recap
- > Application layer overview

Application Layer: Goals

- Conceptual + implementation aspects of network application protocols
 - client server paradigm
 - o peer to peer paradigm
 - o network app. programming
- Learn about applications by examining common applications
 - o smtp/pop
 - o dns
 - http (1, 1.1, /2)
 - o content distribution
 - o peer-to-peer

Network Applications vs. Application-layer Protocols

Network application: communicating, distributed processes

- a process is a program that is running within a host
 - a user agent is a process serving as an interface to the user
 - web: browser
 - streaming audio/video: media player
- processes communicate by an application-layer protocol
 - · e.g., email, Web

Application-layer protocols

- one "piece" of an app
- define messages exchanged by apps and actions taken
- implementing services by using the service provided by the lower layer, i.e., the transport layer

<u>App. and Trans.: App. Protocols and their Transport Protocols</u>

An application needs to choose the transport protocol

ng protocol
IDP
OP
IDP but http
J

Client-Server Paradigm

Typical network app has two pieces: *client* and *server*

Client (C):

- initiates contact with server ("speaks first")
- typically requests service from server
- for Web, client is implemented in browser; for e-mail, in mail reader

Server (S):

- provides requested service to client
- e.g., Web server sends requested Web page; mail server delivers e-mail

Client-Server Paradigm: Key Questions

Key questions to ask about a C-S application

- Is the application extensible?
- Is the application scalable?
- How does the application handle server failures (being robust)?
- How does the application handle security?

Outline

- □ Admin. and recap
- Application layer overview
- Network applications
 - > Email

Electronic Mail

- Still active
 - 80B emails/day
 - 3.9B active email boxes
- A highly recommended reading: a history of Email development
 - linked on the Schedule page

Demo: SMTP

```
C: auth login
S: 334 VXNlcm5hbWU6
C: eG11Y25ucw==
S: 334 UGFzc3dvcmQ6
C: MzM0ZjU2MDVkZjE1MDRmOQ==
S: 235 OK Authenticated
C: mail from:xmucnns@sina.com
S: 250 ok
C: rcpt to:qiaoxiang@xmu.edu.cn
S: 250 ok
C: data
S: 354 End data with <CR><LF><CR><LF>
C: Date:2022-9-22 12:36
C: From:xmucnns@sina.com
C: To:qiaoxiang@xmu.edu.cn
C: Subject:test smtp
C:
C: Hello, Qiao.
S: 250 ok queue id 11479549283321
C: quit
S: 221 smtp-97-27.smtpsmail.fmail.bx.sinanode.com
S: Connection closed by foreign host.
```

Electronic Mail: Components

message queue
user mailbox

Three major components:

- User agents
- Mail servers
- Protocols
 - Mail transport protocol
 - SMTP
 - Mail access protocols
 - POP3: Post Office Protocol [RFC 1939]
 - IMAP: Internet Mail Access Protocol [RFC 1730]

Email Transport Architecture

http://www.maawg.org/sites/maawg/files/news/MAAWG_Email_Authentication_Paper_2008-07.pdf

SMTP: Mail Transport Protocol Messages (Envelop Messages)

C: eG11Y25ucw== S: 334 UGFzc3dvcmQ6 C: MzM0ZjU2MDVkZjE1MDRmOQ== S: 235 OK Authenticated C: mail from:xmucnns@sina.com S: 250 ok C: rept to:qiaoxiang@xmu.edu.cn S: 250 ok C: data S: 354 End data with <CR><LF>.<CR><LF> C: Date: 2021-9-22 12:36 C: From:xmucnns@sina.com To:qiaoxiang@xmu.edu.cn Subject:test smtp C: Hello, Qiao. S: 250 ok qu Email text different from C: quit S: 221 smtp-SMTP protocol message S: Connectid

%telnet smtp.sina.com 25

Mail Message Data

Benefit of separating protocol and msg: easier extensibility

Message Format: Multimedia Extensions

- MIME: multimedia mail extension, RFC 2045, 2056
- Additional lines in msg header declare MIME content type

Benefit of MIME type: self describing data type, adding extensibility.

Multipart Type: How Attachment Works

```
From: xmucnns@sina.com
To: qiaoxianq@xmu.edu.cn
Subject: Network map.
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=98766789
--98766789
Content-Transfer-Encoding: quoted-printable
Content-Type: text/plain
Hi,
Attached is network topology map.
--98766789
Content-Transfer-Encoding: base64
Content-Type: image/jpeg
base64 encoded data .....
.....base64 encoded data
--98766789--
```

POP3 Protocol: Mail Retrieval

Authorization phase-

- client commands:
 - o user: declare username
 - pass: password
- server responses
 - +OK
 - o -ERR

Transaction phase, client:

- list: list message numbers
- retr: retrieve message by number
- □ dele: delete
- quit

```
S: +OK sina pop3 server ready
```

C: user xmucnns

S: +OK welcome to sina mail

C: pass 334f5605df1504f9

S: +OK 4 messages (32377 octets)

user successfully logged in

C: list

S: +OK 4 messages (32377 octets)

S: 1 10410

S: 2 10748

S: 3 7859

S: 4 3360

S: .

C: retr 4

S: +OK 3360 octets

C: dele 2

C: quit

S: +OK POP3 server signing off

Exercise

- □ Register an email address at sina.com
- Send an email to the registered email address using smtp
- □ Retrieve using pop

Evaluation of SMTP/POP/IMAP

Key questions to ask about a C-S application

- extensible?
- scalable?
- robust?
- security?

Email Security: Spam

□ Spam (Google)

Email Security Issue: Spam

© Statista 2017

Source: https://www.statista.com/statistics/420400/spam-email-traffic-share-annual/

Email Security Issue: Spam

Source: https://www.statista.com/statistics/420391/spam-email-traffic-share/

Discussion: How May One Handle Email Spams?

Detection Methods Used by GMail

- Known phishing scams
- Message from unconfirmed sender identity
- Message you sent to Spam/similarity to suspicious messages
- Administrator-set policies

https://support.google.com/mail/answer/1366858?hl=en

Email Authentication Approaches

Sender Policy Frame (SPF)

DomainKeys Identified Mail (DKIM)
Authenticated Results Chain (ARC)

Sender Policy Framework (SPF RFC7208)

Key Question for SPF?

□ How does SPF know if its neighbor MTA is a permitted sender of the domain?

DomainKeys Identified Mail (DKIM; RFC 5585)

- A domain-level digital signature authentication framework for email, using public key crypto
 - E.g., mail.sina.com signs that the message is sent by mail.sina server
- Basic idea of public key signature
 - Owner has both public and private keys
 - Owner uses private key to sign a message to generate a signature
 - Others with public key can verify signature
 - Assumption: difficult to get private key even w/ public key distributed

DomainKeys Identified Mail (DKIM)

Example: RSA

- 1. Choose two large prime numbers p, q. (e.g., 1024 bits each)
- 2. Compute n = pq, z = (p-1)(q-1)
- 3. Choose e (with e < n) that has no common factors with z. (e, z are "relatively prime").
- 4. Choose d such that ed-1 is exactly divisible by z. (in other words: $ed \mod z = 1$).
- 5. Public key is (n,e). Private key is (n,d).

RSA: Signing/Verification

- O. Given (n,e) and (n,d) as computed above
- 1. To sign message, m, compute h = hash(m), then sign with private key

 $s = h^d \mod n$ (i.e., remainder when h^d is divided by n)

2. To verify signature s, compute

 $h' = s^e \mod n$ (i.e., remainder when s^e is divided by n)

Magic happens!
$$h = (h^d \mod n)^e \mod n$$

The magic is a simple application of Euler's generalization of Fermat's little theorem

Key Question about DKIM?

□ How does DKIM retrieve the public key of the author domain?

Summary: Some Key Remaining Issues about Email

Basic: How to find the email server of a domain?

- Scalability/robustness: how to find multiple servers for the email domain?
- Security
 - SPF: How does SPF know if its neighbor MTA is a permitted sender of the domain?
 - DKIM: How does DKIM retrieve the public key of the author domain?