
Network Applications:
File Transfer Protocol； HTTP/1.0

Qiao Xiang, Congming Gao, Qiang Su

https://sngroup.org.cn/courses/cnns-
xmuf25/index.shtml

09/28/2025

This deck of slides are heavily based on CPSC 433/533 at Yale University, by courtesy of Dr. Y. Richard Yang.

Outline

q Admin. and recap
q Network application programming

o UDP sockets
o TCP sockets

q Network applications (continue)
Ø File transfer (FTP) and extension

2

3

Big Picture: Socket

buffers,
states

buffers,
states

4

Recap: TCP Socket Big Picture
-Welcome socket: the waiting room
-connSocket: the operation room

Summary: Basic Socket
Programming

q They are relatively straightforward
o UDP: DatagramSocket
o TCP: ServerSocket, Socket

q The main function of socket is
multiplexing/demultiplexing to application
processes
o UDP uses (dst IP, port)
o TCP uses (src IP, src port, dst IP, dst port)

q Always pay attention to encoding/decoding

5

6

FTP: the File Transfer Protocol

q Transfer files to/from remote host
q Client/server model

o client: side that initiates transfer (either to/from
remote)

o server: remote host
q ftp: RFC 959
q ftp server: port 21/20 (smtp 25, http 80)

file transfer FTP
server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

7

FTP Commands, Responses

Sample commands:

q sent as ASCII text over control
channel

q USER username
q PASS password
q PWD returns current dir
q STAT shows server status
q LIST returns list of file in

current directory
q RETR filename retrieves

(gets) file
q STOR filename stores file

Sample return codes
q status code and phrase
q 331 Username OK,

password required
q 125 data connection

already open;
transfer starting

q 425 Can’t open data
connection

q 452 Error writing
file

8

FTP Protocol Design

q What is the
simplest design of
data transfer?

FTP
client

FTP
server

TCP control connection
port 21 at server

RETR file.dat

data

9

FTP: A Client-Server Application with
Separate Control, Data Connections
q Two types of TCP connections opened:

o A control connection: exchange commands,
responses between client, server.
“out of band control”

o Data connections: each for file data
to/from server

Discussion: why does FTP separate control/data connections?

Q: How to create a new data connection?

10

Traditional FTP: Client Specifies Port for
Data Connection

FTP
client

FTP
server

TCP control connection
port 21 at server

PORT clientip:cport

RETR file.dat

Server initiates TCP
data connection

server:20
clientip:cport

11

Example using telnet/nc

q Use telnet for the control channel
o telnet ftp.ietf.org 21
o user anonymous
o pass your_email
o port 10,90,61,172,4,1
o list

q use nc (NetCat) to receive/send data
with server
o nc –v –l 1025

client
IP address

port
number

12

Problem of the Client PORT Approach

q Many Internet
hosts are behind
NAT/firewalls that
block connections
initiated from
outside

FTP
client

FTP
server

TCP control connection
port 21 at server

PORT clientip:cport

RETR file.dat

Server initiates TCP
data connection

server:20
clientip:cport

13

FTP PASV: Server Specifies Data Port,
Client Initiates Connection

FTP
client

FTP
server

TCP control connection
port 21 at server

Server initiates TCP
data connection

server:20
clientip:cport

PORT clientip:cport

RETR file.dat

FTP
client

FTP
server

TCP control connection
port 21 at server

Client initiates TCP
data connection

of PASV returned
serverip:sport

PASV

RETR file.dat

serverip:sport

14

Example

q Use Wireshark to capture FTP traffic
o Using chrome to visit

ftp://ftp.freebsd.org

15

FTP Extensions

q FTP with extensions
are being used
extensively in large
data set transfers
(e.g., LHC)

16

Data Transfer Structure

q See GridFTP to FTP extensions
o https://www.ogf.org/documents/GFD.20.pd

q Goal of GridFTP: allow parallel, high-throughput data transfer
o Discussion: What features do we need to add to FTP to allow parallel

transfers?

https://www.ogf.org/documents/GFD.20.pd

17

FTP Evaluation

application
transport
network
data link
physical

application
transport
network
data link
physical

request

reply

Key questions to ask about
a C-S application

- Is the application extensible?
- Is the application scalable?
- How does the application handle
server failures (being robust)?
- How does the application provide
security?

What are some interesting
design features of the FTP

protocol?

Outline

q Admin. and recap
q Network application programming

o UDP sockets
o TCP sockets

q Network applications (continue)
Ø File transfer (FTP) and extension
Ø HTTP

18

19

From Opaque Files to Web Pages

q Web page:
o authored in HTML
o addressed by a URL

• URL has two components:
– host name, port number

and
– path name

q Most Web pages
consist of:
o base HTML page, and
o several referenced

objects
o E.g., image

http://qiaoxiang.me:80/index.html

User agent:
Explorer

Server
running

Apache Web
server

User agent:
Firefox

http request

http request

http response

http
 response

The Web pages are requested through
HTTP: hypertext transfer protocol

20

HTTP is Still Evolving

RF
C 1

94
5

RF
C 2

06
8

RF
C 7

54
0

21

HTTP 1.0 Message Flow

q Server waits for requests from clients

q Client initiates TCP connection (creates socket) to
server, port 80

q Client sends request for a document
q Web server sends back the document
q TCP connection closed

q Client parses the document to find embedded
objects (images)
o repeat above for each image

22

HTTP 1.0 Message Flow (more detail)

Suppose user enters URL
qiaoxiang.me/index.html

1a. http client initiates TCP
connection to http server
(process) at qiaoxiang.me.
Port 80 is default for http
server.

2. http client sends http
request message
(containing URL) into
TCP connection socket

1b. server “accepts”
connection, ack. client

3. http server receives request
message, forms response
message containing requested
object (index.html), sends
message into socket (the
sending speed increases slowly,
which is called slow-start)

time

0. http server at host
qiaoxiang.me waiting for
TCP connection at port 80.

23

HTTP 1.0 Message Flow (cont.)

5. http client receives response
message containing html file,
parses html file, finds
embedded image

6. Steps 1-5 repeated for each
of the embedded images

4. http server closes TCP
connection.

time

24

Discussion
q How about we use FTP as HTTP?

FTP
client

FTP
serverTCP control connection

port 21 at server

Server initiates TCP
data connection

server:20
clientip:cport

PORT clientip:cport

RETR index.html

FTP
client

FTP
server

TCP control connection
port 21 at server

Client initiates TCP
data connection

of PASV returned
serverip:sport

PASV

RETR index.html

serverip:sport

25

HTTP1.0 Message Flow
q HTTP1.0 servers are stateless servers: each

request is self-contained
HTTP
client

HTTP
server

Server sends file on
same connection

GET /home/index.html
USER: xxx
PASS: xxx

FTP
client

FTP
server

Server initiates TCP
data connection

server:20
clientip:cport

PORT clientip:cport

RETR index.html

USER xxx

PASS xxx

CWD home

26

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:
Opens TCP connection to port 80
(default http server port) at qiaoxiang.me.
Anything typed in sent
to port 80 at qiaoxiang.me

telnet qiaoxiang.me 80

2. Type in a GET http request:

GET /index.html HTTP/1.0 By typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to http server

3. Look at response message sent by the http server.

27

Trying out HTTP (client side) for
yourself
q Try telnet GET on www.xmu.edu.cn

http://www.xmu.edu.cn/

28

HTTP Request Message Example: GET

GET /somedir/page.html HTTP/1.0
Host: www.somechool.edu
Connection: close
User-agent: Mozilla/4.0
Accept: text/html, image/gif, image/jpeg
Accept-language: en

(extra carriage return, line feed)

request line
(GET, POST,
HEAD, PUT,

DELETE,
TRACE … commands)

header
lines

Carriage return,
line feed

indicates end
of message

Virtual host multiplexing

Content negotiation

Connection management

http://www.somechool.edu/

29

HTTP Response Message

HTTP/1.0 200 OK
Date: Wed, 23 Jan 2008 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
lines

data, e.g.,
requested
html file

30

HTTP Response Status Codes

200 OK
o request succeeded, requested object later in this message

301 Moved Permanently
o requested object moved, new location specified later in

this message (Location:)
400 Bad Request

o request message not understood by server
404 Not Found

o requested document not found on this server
505 HTTP Version Not Supported

In the first line of the server->client response message. A few
sample codes:

31

Trying Use Chrome to visit Course Page

32

Design Exercise

q Workflow of an HTTP server processing
a GET request that maps to a file:

GET /somedir/page.html HTTP/1.0
Host: www.someschool.edu

Basic HTTP Server Workflow

TCP socket space

state: listening
address: {*.6789, *.*}
completed connection queue:
sendbuf:
recvbuf:

128.36.232.5
128.36.230.2

state: listening
address: {*.25, *.*}
completed connection queue:
sendbuf:
recvbuf:

state: established
address: {128.36.232.5:6789, 198.69.10.10.1500}
sendbuf:
recvbuf:

connSocket = accept()

Read from file/
write to connSocket

close connSocket

Create
ServerSocket(6789)

Map URL to file

read request from
connSocket

34

Example Code

q See BasicWebServer.java

q Try using telnet and real browser, and fetch
o file1.html
o index.html
what difference in behavior?

Static -> Dynamic Content

connSocket = accept()

Read from file/
write to connSocket

close connSocket

Create
ServerSocket(6789)

Map URL to file

read request from
connSocket

It does not
have to be a
static file

36

Outline

q Admin and recap
q HTTP/1.0

o Basic design
Ø Dynamic content

37

Dynamic Content Pages

q There are multiple approaches to make
dynamic web pages:
o Embed code into pages (server side include)

• http server includes an interpreter for the type of pages

o Invoke external programs (http server is
agnostic to the external program execution)
• E.g., Common Gateway Interface (CGI)

http://www.cs.yale.edu/index.shtml
http://www.cs.yale.edu/cgi-bin/ureserve.pl
http://www.google.com/search?q=Yale&sourceid=chrome

38

Example SSI

q See programming/examples-java-
socket/BasicWebServer/ssi/index.shtml,
header.shtml, …

