
1

Outline

o OOP analysis examples
o Random objects vs Math.random

o DrawingPanel objects vs StdDraw



2

StdDraw

❑ Java graphics by nature is OOP

❑StdDraw is a library to hide OOP 
programming complexity (No objects)

o Just as 
Math.random is a delegation to a single 
Random object 
StdDraw is a delegation to a graphics 
window



DrawingPanel Design

Developed for the Back to Basics Textbook, using an 
OOP approach. Two key classes (types of objects):

❑ DrawingPanel: A window on the screen.
• Not part of Java; provided by the textbook.

❑ Graphics: A "pen" to draw shapes 
 and lines on a window.
• from Java standard class library



DrawingPanel

A "Canvas" object that represents windows/drawing surfaces

❑ To create a window:
DrawingPanel name = new DrawingPanel(width, height);

Example:

DrawingPanel panel = new DrawingPanel(300, 200);

See SimplePanels.java



Graphics

❑DrawingPanel draws shapes / lines 
/characters /imagines using another object 
of type Graphics. 
• Graphics: Your painting toolset: "Pen" or "paint brush" 

objects to remember state and draw lines and shapes; 
fonts for character, …

• Access it by calling getGraphics 
on a DrawingPanel object. 

 Graphics g = panel.getGraphics();

• Draw shapes by calling methods
on the Graphics object.

  g.setColor(Color.BLACK);

   g.fillRect(10, 30, 60, 35);

  g.fillOval(80, 40, 50, 70);



Graphics Coordinate System

❑ Each (x, y) position is a pixel  ("picture element").

❑ Position (0, 0) is at the window's top-left corner.
• x increases rightward and the y increases downward.

❑ A rectangle from (0, 0) to (200, 100) looks like this:

(0, 0) x+

      

      

 
 (200, 100)

      y+



Some Graphics Methods

Method name Description

g.setColor(Color); set Graphics to paint any following 

shapes in the given color

g.drawLine(x1, y1, x2, y2); line between points (x1, y1), (x2, y2)

g.drawOval(x, y, width, height); outline largest oval that fits in a box of 

size width * height with top-left at (x, y)

g.drawRect(x, y, width, height); outline of rectangle of size

width * height with top-left at (x, y)

g.drawString(text, x, y); text with bottom-left at (x, y)

g.fillOval(x, y, width, height); fill largest oval that fits in a box of size 

width * height with top-left at (x, y)

g.fillRect(x, y, width, height); fill rectangle of size width * height 

with top-left at (x, y)

http://download.oracle.com/javase/6/docs/api/java/awt/Graphics.html

See SimplePanels.java



8

Outline

o OOP analysis examples
o Random objects vs Math.random

o Complex numbers and fractal graphics



9

Complex Numbers

❑ A complex number (a + bi) is a quintessential 
mathematical abstraction
• (a + bi) + (c + di) = a + c + (b + d) i

• (a + bi) x (c + di) = ac - bd + (ad + bc)i

❑ A main power of complex numbers comes from 
Euler’s formula

a = 3 + 4i,  b = -2 + 3i

a + b = 1 + 7i

a  b = -18 + i

| a | = 5

r [cos 𝜙 + sin 𝜙 𝑖] = r e𝑖𝜙

𝜙

r1 𝑒𝜑1 ∗ r2 𝑒𝜑2
 
= r12𝑒𝜑1+𝜑2



10

Complex Numbers are Widely Used 

❑ Control theory and Laplace transforms

❑ Quantum mechanics and Hilbert spaces

❑ Fractals

❑ Signal processing and Fourier analysis

Antennas



11

A Complex Class

❑ Design questions:

• State: what field(s) do we need to represent the state of 
a complex number?

• Design 1
– re, a number representing the real part

– im, a number representing the imaginary part

• Design 2
– r, a number representing the distance to origin

– theta, a number representing the angle

𝜙



12

A Complex Class

❑ Design questions:

• Behaviors: what are some common behaviors of a complex 
number?

• a Complex constructor, to set up the object

• A abs method, to return the distance (magnitude)
• a toString method: Return a string description of a complex 

number

• Mathematical operations such as +, -, *
– a plus method: Add current complex number with another 

complex number
– a times method: Multiply current complex number with 

another complex number
– …



13

The Complex Class: Design Question

public class Complex {

   private double re;

   private double im;

   public Complex(double real, double imag) {

      re = real;

      im = imag;

   }

   public ??  plus(Complex b) {

     …

   }

…

- What is the return type of plus?

- Should plus change the state of the number, e.g.,

Complex c1 = new Complex(1, 1);

Complex c2 = new Complex(2, 1);

c1.plus(c2); // c1 changes to (3, 2)?



14

The Consistency (Familiarity) 
Design Principle

❑ Basic idea when Defining the behaviors of a
type A: 
• Think if there is a well-known type B. If so, make 

A’s behaviors consistent w/ B

❑Suppose a, b, and c are standard numbers 
(Complex numbers are numbers after all)
• Does a + b (think a.+(b) ) change a?

• no

• What is the return of a + b (think a.+(b))?
• The value of a + b so that we can write a + b + c

❑ Complex.plus behavior design:
public Complex plus(Complex b) {
   double real = re + b.re;

      double imag = im + b.im;

      return new Complex(real, imag);

}



15

Complex.java
public class Complex {

   private double re;

   private double im;

   public Complex(double real, double imag) {

      re = real;

      im = imag;

   }

   public String toString() { return re + " + " + im + "i"; }

   public double abs() { return Math.sqrt(re*re + im*im); }

   public Complex plus(Complex b) {
   double real = re + b.re;

      double imag = im + b.im;

      return new Complex(real, imag);

   }

   public Complex times(Complex b) {

      double real = re * b.re – im * b.im;

      double imag = re * b.im + im * b.re;

      return new Complex(real, imag);

   }

}

constructor

instance variables

methods

creates a Complex object,

and returns a reference to it

refers to b's instance variable



Immutability:  Advantages and 
Disadvantages

❑ Consistency w/ primitive types leads to immutable 
data types: object's state does not change once 
constructed.
• Example: Complex object, String.

❑ Advantages.
• Easier for debugging.

• Avoid aliasing bugs.

• Safety:
• Limits scope of code that can change values.

• Pass objects around without worrying about modification.

❑ Disadvantage.  
• New object must be created for every value.



17

A Simple Client

public static void main(String[] args) {

   Complex a = new Complex( 3.0, 4.0);

   Complex b = new Complex(-2.0, 3.0);

  Complex c = a.times(b);

   System.out.println("a = " + a.toString() );

   System.out.println("b = " + b.toString() );

   System.out.println("c = " + c.toString() );

}
% java TestClient

a = 3.0 + 4.0i

b = -2.0 + 3.0i

c = -18.0 + 1.0i



18

A Complex Client: Mandelbrot Set

▪  Mandelbrot set.  A set of complex numbers.

▪  Plot.  
▪ Plot (x, y) black if z = x + y i is in the set, and white otherwise.

▪  Can be used to model complex rugged shapes such as uneven 
clouds, contours of mountains, winding riverbeds, arts, …

http://users.math.yale.edu/mandelbrot/



19

A Complex Client: Mandelbrot Set

Mandelbrot set.  Is complex number z0 in the set?
 Iterate zt + 1 = (zt )

2 + z0.

 If | zt | diverges to infinity, then z0 is not in set;
otherwise z0 is in set.

z = 1 + i not in Mandelbrot setz = -1/2 is in Mandelbrot set

-1/2 + 0i0

-1/4 + 0i1

-7/16 + 0i2

-79/256 + 0i3

-26527/65536 + 0i4

-1443801919/4294967296 + 0i

zt

5

t

1 + i0

1 + 3i1

-7 + 7i2

1 - 97i3

-9407 – 193i4

88454401 + 3631103i

zt

5

t



20

Testing Point in Mandelbrot Set

Practical issues.
 Cannot iterate infinitely many times.

Approximate solution.
 Fact:  if | zt | > 2 for any t, then z not in Mandelbrot set.
 Pseudo-fact:  if | z255 | < 2 then z "likely" in Mandelbrot 

set.



21

Testing Point in Mandelbrot Set

Our Mandelbrot test:

   Returns the number of iterations to check if z0 is

in Mandelbrot

public static int mand(Complex z0) {

   final int max = 255;

   Complex z = z0;

   for (int t = 0; t < max; t++) {

      if (z.abs() > 2.0) return t;

      z = z.times(z).plus(z0);

      

   }

   return max;

} 

z = z2 + z0



22

Plotting Mandelbrot Set

Practical issues.

 Cannot plot infinitely many points.

Display technique.

 User specifies center, size

 Program maps the points on the

N-by-N drawing panel to center, size

xc+ yci

(xc-size/2) + (yc-size/2) i

Each grid has length size/N



23

Plotting Mandelbrot Set 
(DrawingPanel)

Plot the Mandelbrot set in gray scale.

public static void main(String[] args) {

   double xc   = Double.parseDouble(args[0]);

   double yc   = Double.parseDouble(args[1]);

   double size = Double.parseDouble(args[2]);

   DrawingPanel panel = new DrawingPanel(N, N);

   Graphics g = panel.getGrahics(); 

   for (int i = 0; i < N; i++) {

      for (int j = 0; j < N; j++) {

         double x0 = xc - size/2 + size*i/N;

         double y0 = yc - size/2 + size*j/N;

         Complex z0 = new Complex(x0, y0);

         int gray = mand(z0);

         Color color = new Color(gray, gray, gray);

         g.setColor( color );

         g.drawLine(i, N-1-j, i, N – 1 - j);

      } // end of for

   } // end of for

} (0, 0) is upper left

MandelbrotDrawingPanel.java 



24

Mandelbrot Set

% java MandelbrotDrawingPanel –.5 0 2 % java MandelbrotDrawingPanel .1045 -.637 .01



25

Mandelbrot Set

% java MandelbrotDrawingPanel –.5 0 2 % java MandelbrotDrawingPanel .1045 -.637 .01



26

Mandelbrot Set

% java MandelbrotDrawingPanelColor –.5 0 2

Plot the Mandelbrot set in color using a color mapping table.



27

Mandelbrot Set

% java MandelbrotDrawingPanelColor –.5 0 2

Plot the Mandelbrot set in color using a color mapping table.



28



29

Mandelbrot Set

(-1.5, -1)



30

Mandelbrot Set

❑See video

https://www.bilibili.com/video/BV1ci4y1G7
D2/?vd_source=4a5effc51fa44df6d45b10
4296de32eb



Picture Data Type

❑ Raster graphics.  Basis for image 
processing.

❑ Set of values.  2D array of Color objects 
(pixels).

❑API.



32

Plotting Mandelbrot Set (Picture)
Plot the Mandelbrot set in gray scale using Picture.

public static void main(String[] args) {

   double xc   = Double.parseDouble(args[0]);

   double yc   = Double.parseDouble(args[1]);

   double size = Double.parseDouble(args[2]);

   Picture pic = new Picture(N, N); // NxN picture

   for (int i = 0; i < N; i++) {

      for (int j = 0; j < N; j++) {

         double x0 = xc - size/2 + size*i/N;

         double y0 = yc - size/2 + size*j/N;

         Complex z0 = new Complex(x0, y0);

         int gray = mand(z0);

         Color color = new Color(gray, gray, gray);

         pic.set(i, N-1-j, color);

      } // end of for

   } // end of for

}

scale to screen 

coordinates

(0, 0) is upper left

MandelbrotPicture.java 


	OOP examples
	Slide 1
	Slide 2: StdDraw
	Slide 3: DrawingPanel Design
	Slide 4: DrawingPanel
	Slide 5: Graphics
	Slide 6: Graphics Coordinate System
	Slide 7: Some Graphics Methods
	Slide 8
	Slide 9: Complex Numbers
	Slide 10: Complex Numbers are Widely Used 
	Slide 11: A Complex Class
	Slide 12: A Complex Class
	Slide 13: The Complex Class: Design Question
	Slide 14: The Consistency (Familiarity) Design Principle
	Slide 15
	Slide 16: Immutability:  Advantages and Disadvantages
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Mandelbrot Set
	Slide 30
	Slide 31: Picture Data Type
	Slide 32


