Introduction to
Computational Thinking

Inheritance and object construction;

Method Overriding; Object Hierarchy;
Event-Driven Programming

Qiao Xiang, Qingyu Song
https://sngroup.org.cn/courses/ct-
xmuf25/index.shtml

12/17/2025

This deck of slides are heavily based on cs112 at Yale University and cs101 at UCAS, respectively,
by courtesy of Dr. Y. Richard Yang and Dr. Zhiwei Xu.

Qutline

a0 Admin and recap

2 Final Exam: 2025-12-30 10:30-12:30 %
1% (154%) A206

0 Object-oriented design
> Inheritance(4£7) relationship o witm e - ©

GIHER ADRE PEEEURE ---]

miE—R{FIVE L RE
I wLLAE

HETR ¢ it el
12.27 6 18.18%
12.31 2 6.06%
1.16 25 75.76%
FEEAAS AR 33

Recap: The GeoVisualization Domain and
OO Composition/Association Relationships

1 m | m 2
GeoMap «p— Region Color
/ 1
A composition
relationship 1 An association
Pol ygon relationship
1
m

Point

Tnheritance

O Inheritance: Reuse classes by deriving a new class from

an existing one

- The existing class is called the parent class, or superclass, or
base class

- The derived class is called the child class or subclass.

0 As the name implies, the child inherits characteristics
of the parent

- The child class inherits every method and every data field
defined for the parent class

Deriving Subclasses: Syntax

public class <name> extends <superclass> {

}

For example:

class Animal {

// class contents

private int weight;

public int getWeight () {..}
}

class Bird extends Animal {
private int flySpeed;
public void fly () {..};

}

Visualize Inheritance

O The child class inherits all methods and data
defined for the parent class

- an animal object
Animal

weight = 120

- weight : int getWeight()

+ getWeight() : int

/\
a bird object
Bird weight = 100
- flySpeed : int flySpeed = 30
getWeight()
fly()

+ fly() : void

Visualize Inheritance

a Shown graphically in a class diagram, with
the arrow pointing to the parent class

Animal

- weight : int

+ getWeight() : int

AN

Inheritance should create
an is-a relationship:

the child is @ more specific
version of the parent

Bird

- flySpeed : int

+ fly() : void

Example:
T irm(12)0 5= 5B)
A The firm has 5 types of employees

O Standard employee

O Secretary
* prepare ordinary documents

Ll
L

O Legal secretary
* prepare both documents and legal documents. ordinary

O Marketer

« advertise

O Lawyer
- sue(#2iF)

The Law Firm

O Work time policy: Employees work 40 hours / week.
Q Pay policy: Employees, base salary of $50,000 per
year, except that

o legal secretaries: 10% extra over base per year,
o marketers: 20% extra over base per year,

o lawyers who reach partner level get bonus.

Q Vacation policy: Employees have 2 weeks of paid
vacation leave per year, except that
o lawyers: an extra week on top of base,

o employees: use ayellow form to apply
for leave, except for lawyers who use
a pink form.

The Emplovee class

public class Employee {
public int hours () {
40; // works 40 hours / week

return

}

public double pay () {
50000.0; // $50,000.00 / year

return

}

public int vacationDays () {

return

}

public String vacationForm() {

return

}

10; // 2 weeks' paid wvacation

"yellow"; // use

public String toString() {

String
result
result
result
return

result = "Hours: "
+= "Pay: " + pay()
+= "Vacation days:
+= "Vacation Form:
result;

"

"

the yellow form

hours () + "\n";

1] \nn;

+ vacationDays () + "\n";
+ vacationForm() + "\n";

10

Secretary without Reuse

public class Secretary {
public int hours() ({
return 40; // works 40 hours / week

}
public double pay() {

return 50000.0; // $50,000.00 / year
}
public int vacationDays() {
return 10; // 2 weeks' paid vacation
}
public String vacationForm() {
return "yellow"; // use the yellow form

}
public String toString() {

String result += "Hours: " + hours() + "\n";

result += "Pay: ” + pay() + "\n";

result += "Vacation days: " + vacationDays() + "\n";
result += "Vacation Form: " + wvacationForm() + "\n";

return result;

}
public void prepareDoc (String text) ({

System.out.println (“Working on Document: " + text);

Improved Secretary code

// A class to represent secretaries.
public class Secretary extends Employee ({

public void prepareDoc (String text) {
System.out.println (“Working on document: " + text);

Q By extending Employee, each Secretary object now:

e receives methods hours, pay, vacationDays, vacationForm,
toString from Employee’s definition automatically

e can be treated as an Employee by client code (seen later)
a Now we only write the parts unique to each type.

12

Qutline

A Class inheritance
o why and how?
o inheritance and object construction

13

Object Construction Example

public class Secretary extends Employee {
public Secretary () {

»

System.out.println (“In Secretary()”);

}
}

public class Employee {
public Employee () {

System.out.println(“In Employee()’);
}

}

public static void main(String[] args) {
Secretary seth = new Secretary();

}

Output:
In Employee ()
In Secretary/()

14

Object Construction Example

public class Secretary extends Employee {
public Secretary () {

”

) ;

System.out.println (“In Secretary ()

public class Employee {
private String name;

public Employee (String name) {
System.out.println (“In Employee ()

”

) ;

this.name = name;

11 ”

—Systemout-printin{t—In—tEmployeet—r+
—F

}

Puzzle: This program will not compile.

Inheritance and Constructor

a Java object construction can appear to be complex
A Rules:

1.

2.

When an object is created, the constructor identified by new
is invoked.

If a class does not define any constructor, Java automatically
defines a default constructor (class name w/o any
parameters).

Constructors are not inherited.
In a child class, the constructor of the ﬁaren’r class is first

called. If the programmer does not invoke the parent's

constructor, Java automatically inserts a call to the parent's

default constructor.

public class Secretary extends Employee {

public Secretary () {
// super () is automatically inserted

144

System.out.println(“In Secretary()’);
}

o} 16

Object Construction Example

public class Secretary extends Employee {

public Secretary() {
// super () is automatically inserted, but not defined

144

System.out.println(“In Secretary());

public class Employee {
private String name;

public Employee (String name) {
System.out.println (“In Employee ()”);

this.name = name;

super and Constructor

AIf you insert super (..)as the first
statement in child’ s constructor,
Java will not insert the default
parent constructor:

public class Secretary extends Employee {
public Secretary(String name) {
super (name) ;

»”

System.out.println (“In Secretary()’);
}
}

public class Employee {
private String name;
public Employee (String name) {
System.out.println(“In Employee()”);
this.name = name;

}

18

pixels are
references to

%ixgl column x color yalues
L] o ° L] ,\ l
Exercise: Reuse Existing Class carmalk
row y /
[Assume you find a Picture |
° (E;
class (assume no source file, >
only .class file)
public class Picture — width o
Picture(String filename) create a picture from a file
Picture(int w, int h) create a blank w-by-h picture
int width() return the width of the picture
int height() return the height of the picture
Color get(int x, int y) return the color of pixel (x, y)
void set(int x, int y, Color c) set the color of pixel (x, y) to €
void show() display the image in a window

void save(String filename) save the image to a file

0 Assume you want to have a Picture class w/ more
functions, such as converting to gray. What are
your design options?

Two Options to Reuse an Existing Code

O Wrapper (delegation design)
public class BtrPicture {
private Picture p;

public BtrPicture(String file Name) {
p = hew Picture(fileName);

}
public int width() { return p.width();}

public BtrPicture gray() {
// create a new picture as gray

}
}

}

A Inheritance design
public class BtrPicture extends Picture {

public BfrPicture(String file Name) {
super(fileName);

}

public BtrPicture gray() {
// create a new picture as gray

}

Both designs have pros (positive) and cons (Negative) in terms of amount of coding, control.

20

Qutline

d Admin and recap

A Class inheritance
o why and how?
o inheritance and object construction
o inheritance and "mutation” (overriding)

21

Motivation: Implementing the
Lawyer class: Attempt 1

// A class to represent lawyers.
public class Lawyer extends Employee {

public Lawyer (String name) {
super (name) ;

}

public void sue () {

System.out.println("I'll see you 1in court!");

}
}

public static void main(String[] args) {
Lawyer larry = new Lawyer("larry");
System.out.printin (larry.vacationDays());

}

Does the design work?

22

Motivation: Implementing the
Lawyer class: Attempt 1

// A class to represent lawyers.
public class Lawyer extends Employee {

public Lawyer (String name) {
super (name) ;

}

public void sue () {

System.out.println("I'll see you 1in court!");

}
}

public static void main(String[] args) {
Lawyer larry = new Lawyer("larry");
System.out.printin (larry.vacationDays()); // 10 not 15

}

Does the design work?

23

Problem

d We want lawyers to inherit most behaviors
from employee, but we want to replace
parts with new behavior:

o Lawyers get an extra week of paid vacation over
base vacation (a total of 3).

o Lawyers use a pink form when applying for
vacation leave.

24

Defining Methods in the Child

Class: Overriding Methods

a A child class can (have the option to)
override the definition of an inherited
method in favor of its own

- that is, a child can redefine a method that it
inherits from its parent
- the new method must have the same sighature as

the parent's method, but can have different
code in the body

a The method invoked is always the one
defined in the child class, if the child class
refines (overrides) a method

25

Lawyer class

// A class to represent lawyers.
public class Lawyer extends Employee {

public Lawyer (String name) {
super (name) ;

}

// overrides getVacationDays from Employee class

public int vacationDays () {

return 15; // one more week vacation

// overrides getVacationForm from Employee class
public String vacationForm() {

return "pink";

public void sue () {
System.out.println("I'll see you in court!");

26

Overriding
and the @Qverride annotation

// A class to represent lawyers.
public class Lawyer extends Employee {

public Lawyer (String name) {
super (name) ;

}

@Override // optional hint to compiler to check spelling

public int wvacationDays () {
return 15; // one more week vacation

@Override
public String vacationForm() {

return "pink";

public void sue () {
System.out.println("I'll see you in court!");

Overloading vs. Overriding

A Overloading deals with
multiple methods in
the same class with
the same name but
different signatures

A Overloading lets you
define a similar
operation in different
ways for different
data

A Overriding deals with
two methods, one ina
parent class and one in
a child class, that have
the same signature

A Overriding lets you
define a similar
operation in different
ways for different
object types

28

Qutline

d Admin and recap

A Class inheritance
o why and how?
o inheritance and object construction
o inheritance and "mutation” (overriding)
o Good overriding design

29

Marketer class

// A class to represent marketers.
public class Marketer extends Employee ({

public Marketer (String name) {
super (name) ;

}

public void advertise() {
System.out.println ("Act while supplies last!");

// override

public double pay () { ‘ o marketers: 20% extra over base per year,
return 60000.0; // $60,000 = +20% of 50,000

}
'Anything you do not like about the design?

30

A Problem

public class Marketer extends Employee

public double pay () {
return 60000.0;

}

* Problem: The policy is that Marketer ‘s
salaries are based on the Emplovyee’ s base
salary (20% more than base), but the pay

code does not reflect this.

31

Motivation: Changes to Common Behavior

3 Imagine a company-wide change affecting all
employees.

QO Example: Everyone is given a $10,000 raise due to
inflation.
> The base employee salary is now $60,000.

o We modify Employee's pay method to reflect this policy
change.

32

Modifying the superclass

// A class to represent employees in general (20-page manual) .
public class Employee {
public int hours () {
return 40; // works 40 hours / week

}

public double pay () {
return 60000.0; // $60,000.00 / year

}
}

0 Issue: the Marketer subclass is still incorrect.
» It has overridden pay to return another value.

0O Good design: derived behavior is based on base
behavior

33

Calling overridden methods

Subclasses can call overridden methods with super

super. <method> (<parameters>)

~ Exercise: Modify Marketer to derive pay
for marketers from base pay.

34

Improved subclasses

public class Marketer extends Employee {
public void advertise () {

System.out.println ("Act now while supplies last!");

// override and invoke the parent’s version
public double pay () {
return super.pay() * 1.2;

35

Qutline

d Admin and recap
A Class inheritance

©)

©)

O

O

why and how?

inheritance and object construction
inheritance and "mutation” (overriding)
inheritance and field access

36

Inheritance and Fields

A Setting: To retain their lawyers, the firm
changes pag golic so that a lawyer gets the
base and $5000 for each year in the firm

public class Lawyer extends Employee {

public double pay () {
return super.pay() + 5000 * years;

}

}

/l years is a private field in Employee.

https://encrypted-tbn0.gstatic.com/images?q=tbn:ANdIGcR3InPYVKkDuRLOzve TXxWOY yTTZi1b5Uo00pD8_Jkodow 0l IP‘§)a7

Problem

Q Fields declared private cannot be
accessed from subclasses

- Reason: subclassing cannot break encapsulation

- Q: how to get around this limitation?

38

Solution 1

A Add an accessor for any field needed by
the subclass

public class Employee {
private String name; private int years;

public Employee (String name, int initialYears) {
this.name = name; years = initialYears;

}

public int getYears () {
return years;
}

}

public class Lawyer extends Employee {
public Lawyer (String name, 1int years) {
super (name, years);

}

public double pay () {
return super.pay() + 5000 * getYears();

}

39

Solution 2

ad Java provides a third visibility modifier to
denote fields/methods to be accessible by
only child classes: protected

public class Employee {
private String name;
protect int years;

public Employee (String name, int years) {
this.name = name;
this.years = years;

40

Discussion

d How to choose between the two designs?
= Design 1: Add public getYear ()
= Design 2: make year protected

d Use Design 1, unless the method is an
implementation method (not accessable,
nhot service method)

d Adding public getYear () makes it available

to not only child class, but also all other
classes.

a If you do not want this, use Design 2

41

Qutline

d Admin and recap
A Class inheritance

©)

©)

O

O

O

why and how?

inheritance and object construction
inheritance and "mutation” (overriding)
inheritance and field access
inheritance hierarchy

42

Levels of inheritance

* Multiple levels of inheritance in a hierarchy are
allowed.

» Example: A legal secretary is the same as a regular
secretary but makes more money (10% more) and can
file legal briefs.

» Exercise: Implement the LegalSecretary class.

43

Example: LegalSecretary class

// A class to represent legal secretaries.
public class LegalSecretary extends Secretary {
public void filelLegalBriefs() {
System.out.println("I could file all day!'");

public double pay () {
return super.pay() * 1.1 ;

44

Example: Partner class

ad Partner is a senior lawyer that can get

bonus. Thus it supports:
awardBonus (double bonus)

45

Example: Partner class

// A class to represent partner.

public class Partner extends Lawyer {
private double bonus;

public void awardBonus (double bonus)
this.bonus = bonus;

public double pay () {
return super.pay () + bonus ;

{

46

Class Hierarchies

0 Many large-scale software systems define
class hierarchies, where the root defines
the common behaviors

Employee
/\

Secretary Lawyer Marketer

/N /\

Partner

LegalSecretary

Qutline

d Admin and recap
A Class inheritance

©)

©)

O

O

O

O

why and how?

inheritance and object construction
inheritance and "mutation” (overriding)
inheritance and field access
inheritance hierarchy

inheritance hierarchy of Critters and event-
driven programming

49

Critters

O A simulation (game) world of animal objects (e.g., Ants,
Birds, Cougars) with common behaviors such as

+oeat eating food et e sttt
- fight animal fighting “

- getColor color to display

- getMove movement

- toString letter to display

50

The critter Class

// abstract class means not implement every method
public abstract class Critter {
public boolean eat /()
public Attack fight (String opponent)
// ROAR, POUNCE, SCRATCH, FORFEIT
public Color getColor ()
public Direction getMove (String[][] grid)
// NORTH, SOUTH, EAST, WEST, CENTER
public String toString/()

// read the class for other methods available

Defining a Critter subclass

public class name extends Critter {

O extends Critter tells the simulator your class
IS a critter
- an example of inheritance

a Override methods to give each new type of animal
distinct behaviors.

52

Example Critter World Class Hierarchy

Critter
/\
Ant Bird Hippo Bulldog
/\
Vulture
Vulture A%
Hippoifl 5

Bulldog3 4 X

53

The Simulator (Control

ler)

A The simulator is in
CritterMain.java

It searches local dir
for all critters types

Q1 The simulator creates 0 S

an array of critters =
2"Go" > loop, e.qg., 0

- move each animal (getMove)

- if two collide(fi#if&), call each’s
fight method on its behavior

- if is over food, call eat

54

Simulator Pseudo-code

Critter[] critters = new Critter[N];

critters[0] = new Ant () ;

Y w
e * 5 a0 0 5 B O © 5 Kormn

critters[l] = new Bird(); B P P -+

loop T w e T

foreach critter i1 in critters - S » | o

call getMove of critter i if it can move N

foreach critter i in critters
if new pos of critter 1 results in fight
ask how critter i will fight
else if new pos finds food
ask critter i whether it will eat
else 1f new pos results in mate possibility
ask if critter i will mate

compute new state of critters

55

Critter Example: Stone

import java.awt.¥*;

public class Stone extends Critter {
public Attack fight(String opponent) ({
return Attack.ROAR, //_ROAR (HJEE) ... nothing beats that!

public Color getColor () {
return Color.GRAY, // stones are gray in color

public String toString() {
return "St"; // the game displays a stone

56

Event-Driven Programming

A Key concept: The simulator is in control,
NOT your animal.

- Example: getMove can return only one move at

a time.
getMove can't use loops to return a sequence

of moves.

» It wouldn't be fair to let one animal make many moves
in one turnl

- Your animal must keep state (as fields) so that
it can make a single move, and know what moves
to make later.

- We say that you focus on writing the callback
functions of objects

57

Critter exercise: Cougar @8 g

d Write a critter class Cougar (among the
dumbest of all animals):

Method Behavior

constructor | public Cougar ()

eat Always eats.

fight Always roars.

getColor |Blue if the cougar has never fought; red if he has.

getMove Walks west until he finds food; then walks east
until he finds food; then goes west and repeats.

toString "Cc"

Implement Cougar's eat, fight, toString.

58

getMove

O How can a critter move west until it finds food and
then moves to east until find food and repeat?

c Direction getMove (String[][] grid

inlTs currentDirect = WEST

loop
if (eat) {

rever rrentDir

] currentDirection;

59

getMove for Cougar

d State mcxchineeat 0)

@ eat (@

d How to remember the state?

- a boolean instance variable:
boolean west

d What is initial state and where to set it?
- In constructor: west = true;

d Who/when updates the state?

- Ineat () : reverse state

60

Blue if the Cougar has

geTCO|Or' for' COugar' never fought; red if he has.

Q State machineq. .+

()
Has

d How to remember the state?

- A boolean instance variable:
boolean fought

d What is initial state and where to set it?
- In constructor: fought = false;

d Who/when updates the state?
- In fight(): fought = true

61

Cougar solution

import java.awt.*; // for Color

public class Cougar extends Critter {
private boolean west;
private boolean fought;

public Cougar () {
west = true;
fought = false;
}

public boolean eat () {
west = !west;
return true;

}

public Attack fight (String opponent)
fought = true;
return Attack.POUNCE;

62

Cougar solution

public Color getColor () {
if (fought) {
return Color.RED;
} else {
return Color.BLUE;
}
}

public Direction getMove (String[] []
if (west) {
return Direction.WEST;
} else {
return Direction.EAST;
}
}

public String toString() {
return "C";

}

grid)

{

63

Comment: PS10 Development Strategy

0 Do one species at a time

- in ABC order from easier to harder
- debug printlns

A Simulator helps you debug
- smaller width/height
- fewer animals
- "Tick" instead of "Go"
- "Debug" checkbox
- drag/drop to move animals

64

Testing critters

3 Focus on one specific critter of one
specific type
- Only spawn 1 of each animal, for debugging

0 Make sure your fields update properly
- Use println statements to see field values

A Look at the behavior one step at a time
- Use "Tick" rather than "Go"

65

Recap: Field/Method Access

Access Modifier Who can access

private Only within the defining class
public Everywhere
protected The defining class and its

descendent classes
- With the same package

a Two approaches to access a field/method
defined in parent class
- Parent class defines it as public
- Parent class defines it as protected

66

Recap: The Ccritter Class Hierarchy

Critter
Z\

Ant Bird Hippo Bulldog
AN

Vulture

// abstract class means not implement every method
public abstract class Critter {
public boolean eat ()
public Attack fight (String opponent)
// ROAR, POUNCE, SCRATCH, FORFEIT
public Color getColor ()
public Direction getMove (String[][] grid)
// NORTH, SOUTH, EAST, WEST, CENTER
public String toString()

// read the class for other methods available

67

Critters and Event-Driven Programming

0 Key concepts:

The simulator is in control,
NOT an animal.

- An animal must keep state (as
fields) so that it can make a
single move, and know what
moves to make later.

- We say that event-driven
programming (EDP) focuses on
writing the callback functions
of objects

0 We will discuss how an EDP
framework is designed.

68

Critter : Snake
Method Behavior
constructor | public Snake ()
eat Never eats
fight random pounce(J&#F) or roar
getColor |Color(20, 50, 128)
getMove |1E,1S;2W,1S;3E 1S;4W,1S;5FE, ...
toString "s"

=
m

15

15

15

—y

ELELE

69

EDP for getMove

d Variables that determine
the state for getMove?

- Length of current cycle (east-west

5

15
lSI gé

4 W

15

BW

- Number of moves made in

current cycle
d What is the initial state?
- cycleLength =1
- steps=0

70

Non-EDP Version

A non-event driven version

cycleLength = 1; steps = O;
do {
while (steps < cycleLength)
if cycleLength 7% 2 ==1
go East
else
go West
steps ++;

go South
cycleLength ++; steps = O;

} while (true);

5

15
lSI gé

aw Ps

BW

71

Non-EDP-> EDP: Guarding Condition

Technique: determine the
guarding condition (using state
variables) on action statements

cycleLength = 1; steps = O;
do {
while (steps < cycleLength)
it cycleLength % 2 == 1
go East

else
go West
steps ++;

go South
cycleLength ++; steps = O;

} while (true);

T steps < cycleLeng

A

if (cycleLength % 2 == 1)
go East
else

go West
stepst++;

go South
cycleLength ++
steps=0;

72

Snake solution

import java.awt.*; // for Color

public class Snake extends Critter {
private int cyclelength;

// # steps in curr. Hori
private int steps;

// # of cycle's steps al

public Snake () {
cycleLength = 1;

steps = 0;
t
public Direction getMove () {
if (steps < cyclelength) ({
steps++;
if (cycleLength % 2 = 1) {

return Direction.EAST,
} else {

return Direction.WEST,
}
} else {

steps = 0;

cycleLength ++;

return Direction.SOUTH,

}

public String toString () {
return "S";
}

Comment. States

Q Counting is helpful:
How many total moves has this animal made?
How many times has it eaten? Fought?

O Remembering recent actions in fields may be helpful:

Which direction did the animal move last?
- How many times has it moved that way?

Did the animal eat the last time it was asked?
How many steps has the animal taken since last eating?
How many fights has the animal been in since last eating?

74

	Slide 1: Introduction to Computational Thinking
	Slide 2
	Slide 3
	Slide 4: Inheritance
	Slide 5: Deriving Subclasses: Syntax
	Slide 6: Visualize Inheritance
	Slide 7: Visualize Inheritance
	Slide 8: Example: The Law Firm(律师事务所)
	Slide 9: The Law Firm
	Slide 10: The Employee class
	Slide 11: Secretary without Reuse
	Slide 12: Improved Secretary code
	Slide 13
	Slide 14: Object Construction Example
	Slide 15: Object Construction Example
	Slide 16: Inheritance and Constructor
	Slide 17: Object Construction Example
	Slide 18: super and Constructor
	Slide 19: Exercise: Reuse Existing Class
	Slide 20: Two Options to Reuse an Existing Code
	Slide 21
	Slide 22: Motivation: Implementing the Lawyer class: Attempt 1
	Slide 23: Motivation: Implementing the Lawyer class: Attempt 1
	Slide 24: Problem
	Slide 25: Defining Methods in the Child Class: Overriding Methods
	Slide 26: Lawyer class
	Slide 27: Overriding and the @Override annotation
	Slide 28: Overloading vs. Overriding
	Slide 29
	Slide 30: Marketer class
	Slide 31: A Problem
	Slide 32: Motivation: Changes to Common Behavior
	Slide 33: Modifying the superclass
	Slide 34: Calling overridden methods
	Slide 35: Improved subclasses
	Slide 36
	Slide 37: Inheritance and Fields
	Slide 38: Problem
	Slide 39: Solution 1
	Slide 40: Solution 2
	Slide 41
	Slide 42
	Slide 43: Levels of inheritance
	Slide 44: Example: LegalSecretary class
	Slide 45: Example: Partner class
	Slide 46: Example: Partner class
	Slide 47: Class Hierarchies
	Slide 49
	Slide 50: Critters
	Slide 51: The Critter Class
	Slide 52: Defining a Critter subclass
	Slide 53: Example Critter World Class Hierarchy
	Slide 54: The Simulator (Controller)
	Slide 55: Simulator Pseudo-code
	Slide 56: Critter Example: Stone
	Slide 57: Event-Driven Programming
	Slide 58: Critter exercise: Cougar
	Slide 59: getMove
	Slide 60: getMove for Cougar
	Slide 61: getColor for Cougar
	Slide 62: Cougar solution
	Slide 63: Cougar solution
	Slide 64: Comment: PS10 Development Strategy
	Slide 65: Testing critters
	Slide 66: Recap: Field/Method Access
	Slide 67: Recap: The Critter Class Hierarchy
	Slide 68: Critters and Event-Driven Programming
	Slide 69: Critter : Snake
	Slide 70: EDP for getMove
	Slide 71: Non-EDP Version
	Slide 72: Non-EDP-> EDP: Guarding Condition
	Slide 73: Snake solution
	Slide 74: Comment: States

