
Introduction to
Computational Thinking

Inheritance and object construction;

Method Overriding; Object Hierarchy; 
Event-Driven Programming

Qiao Xiang, Qingyu Song

https://sngroup.org.cn/courses/ct-
xmuf25/index.shtml

12/17/2025

This deck of slides are heavily based on cs112 at Yale University and cs101 at UCAS, respectively,

by courtesy of Dr. Y. Richard Yang and Dr. Zhiwei Xu.



2

Outline

❑ Admin and recap

❑ Final Exam: 2025-12-30 10:30-12:30 学
武楼（1号楼）A206

❑ Object-oriented design
➢ Inheritance(继承) relationship



3

Recap: The GeoVisualization Domain and 
OO Composition/Association Relationships

GeoMap Region

Polygon

Color

Point

1 m m 2

1

1

1

m

A composition 

relationship An association 

relationship



Inheritance

❑Inheritance: Reuse classes by deriving a new class from 
an existing one
• The existing class is called the parent class, or superclass, or 

base class
• The derived class is called the child class or subclass.

❑As the name implies, the child inherits characteristics 
of the parent
• The child class inherits  every method and every data field 

defined for the parent class

4



5

Deriving Subclasses: Syntax

public class <name> extends <superclass> {

}

For example:

class Animal {

    // class contents

    private int weight;

    public int getWeight() {…}

  }

  class Bird extends Animal {

    private int flySpeed;

    public void fly() {…};

  }



6

Visualize Inheritance

❑ The child class inherits all methods and data 
defined for the parent class

Animal

- weight : int

+ getWeight() : int

Bird

- flySpeed : int

+ fly() : void

weight = 120

getWeight() 

weight = 100

flySpeed = 30 

getWeight()

fly()

an animal object

a bird object



7

Visualize Inheritance

❑Shown graphically in a class diagram, with 
the arrow pointing to the parent class

Inheritance should create 

an is-a relationship: 

the child is a more specific 

version of the parent

Animal

- weight : int

+ getWeight() : int

Bird

+ fly() : void

- flySpeed : int



Example:
The Law Firm(律师事务所)
❑ The firm has 5 types of employees

Standard employee

Secretary

• prepare ordinary documents

Legal secretary

• prepare both documents and legal documents. ordinary

Marketer

• advertise

Lawyer

• sue(起诉)

8



The Law Firm

❑ Work time policy: Employees work 40 hours / week.

❑ Pay policy: Employees, base salary of $50,000 per 
year, except that

o legal secretaries: 10% extra over base per year, 

o marketers: 20% extra over base per year,

o lawyers who reach partner level get bonus.

❑ Vacation policy: Employees have 2 weeks of paid 

vacation leave per year, except that

o lawyers: an extra week on top of base,

o employees: use a yellow form to apply 
for leave, except for lawyers who use 
a pink form.

9



The Employee class
public class Employee {

    public int hours() {

        return 40;           // works 40 hours / week

    }

    public double pay() {

        return 50000.0;      // $50,000.00 / year

    }

    public int vacationDays() {

        return 10;           // 2 weeks' paid vacation

    } 

    public String vacationForm() {

        return "yellow";     // use the yellow form

    }

    public String toString() {

        String result = "Hours: " + hours() + "\n"; 

        result += "Pay: " + pay() + "\n";

        result += "Vacation days: " + vacationDays() + "\n";

        result += "Vacation Form: " + vacationForm() + "\n";

        return result;

 }   }
10



Secretary without Reuse
public class Secretary {

  public int hours() {

     return 40;           // works 40 hours / week

  }

  public double pay() {

     return 50000.0;      // $50,000.00 / year

  }

  public int vacationDays() {

     return 10;           // 2 weeks' paid vacation

  } 

  public String vacationForm() {

     return "yellow";     // use the yellow form

  }

  public String toString() {

     String result += "Hours: " + hours() + "\n"; 

     result += "Pay: ”  + pay() + "\n";

     result += "Vacation days: " + vacationDays() + "\n"; 

  result += "Vacation Form: " + vacationForm() + "\n";

     return result;

  }  

  public void prepareDoc(String text) {

     System.out.println(“Working on Document: " + text);

  }

} 11



Improved Secretary code

// A class to represent secretaries.

public class Secretary extends Employee {

    public void prepareDoc(String text) {

        System.out.println(“Working on document: " + text);

    }

}

❑ By extending Employee, each Secretary object now:

 receives methods hours,  pay, vacationDays, vacationForm, 
toString from Employee’s definition automatically

 can be treated as an Employee by client code (seen later)

❑Now we only write the parts unique to each type.

12



13

Outline

❑ Class inheritance
o why and how?

o inheritance and object construction



Object Construction Example

14

public class Secretary extends Employee {

    public Secretary() {

      System.out.println(“In Secretary()”);
    }

    …

}

public class Employee {

    public Employee() {

       System.out.println(“In Employee()”);
    }

    …

}

public static void main(String[] args) {

    Secretary seth = new Secretary();

}

In Employee()

In Secretary()

Output:



Object Construction Example

public class Secretary extends Employee {

  public Secretary() {

     System.out.println(“In Secretary()”);

  }

  …

}

public class Employee {

   private String name;

   public Employee(String name) {

  System.out.println(“In Employee()”);

     this.name = name;

   }

   public Employee() {

System.out.println(“In Employee()”);

   }

   …

}

Puzzle: This program will not compile. 



16

Inheritance and Constructor

❑ Java object construction can appear to be complex
❑ Rules:

1. When an object is created, the constructor identified by new 
is invoked.

2. If a class does not define any constructor, Java automatically 
defines a default constructor (class name w/o any 
parameters).

3. Constructors are not inherited.
4. In a child class, the constructor of the parent class is first 

called. If the programmer does not invoke the parent’s 
constructor, Java automatically inserts a call to the parent’s 
default constructor.

public class Secretary extends Employee {

    public Secretary () {

      // super() is automatically inserted

      System.out.println(“In Secretary()”);
    }

    …}



Object Construction Example

public class Secretary extends Employee {

  public Secretary() {

 

     System.out.println(“In Secretary()”);

  }

  …

}

public class Employee {

   private String name;

   public Employee(String name) {

  System.out.println(“In Employee()”);

     this.name = name;

   }

   …

}

// super() is automatically inserted, but not defined



18

super and Constructor

❑If you insert super(…)as the first 
statement in child’s constructor, 
Java will not insert the default 
parent constructor:

public class Secretary extends Employee {

    public Secretary(String name) {

      super(name); 

      System.out.println(“In Secretary()”);
    }

    …

}

public class Employee {

    private String name;

    public Employee(String name) {

       System.out.println(“In Employee()”);
       this.name = name;

    }

    …

}



Exercise: Reuse Existing Class

❑ Assume you find a Picture
class (assume no source file,
only .class file)

❑ Assume you want to have a Picture class w/ more 
functions, such as converting to gray. What are 
your design options?



Two Options to Reuse an Existing Code

❑ Wrapper (delegation design)
public class BtrPicture {

  private Picture p;

 

  public BtrPicture(String file Name) {
    p = new Picture( fileName );
  }

  public int width() { return p.width();}

  ..

  public BtrPicture gray() {

     // create a new picture as gray

  }

}

20

❑ Inheritance design
public class BtrPicture extends Picture {

 

  public BtrPicture(String file Name) {
    super( fileName );
  }

  ..

  public BtrPicture gray() {

     // create a new picture as gray

  }

}

Both designs have pros (positive) and cons (Negative) in terms of amount of coding, control.



21

Outline

❑Admin and recap

❑ Class inheritance
o why and how?

o inheritance and object construction

o inheritance and “mutation” (overriding)



Motivation: Implementing the 
Lawyer class: Attempt 1
// A class to represent lawyers.

public class Lawyer extends Employee {

    public Lawyer(String name) {

      super(name); 

 }

    public void sue() {

        System.out.println("I'll see you in court!");

    }

}

22Does the design work?

public static void main(String[] args) {
Lawyer larry = new Lawyer("larry");
System.out.println ( larry.vacationDays() );  

}



Motivation: Implementing the 
Lawyer class: Attempt 1
// A class to represent lawyers.

public class Lawyer extends Employee {

    public Lawyer(String name) {

      super(name); 

 }

    public void sue() {

        System.out.println("I'll see you in court!");

    }

}

23Does the design work?

public static void main(String[] args) {
Lawyer larry = new Lawyer("larry");
System.out.println ( larry.vacationDays() );  

}
// 10 not 15 



Problem

❑We want lawyers to inherit most behaviors 
from employee, but we want to replace 
parts with new behavior:
o Lawyers get an extra week of paid vacation over 

base vacation (a total of 3).

o Lawyers use a pink form when applying for 
vacation leave.

24



25

Defining Methods in the Child 
Class: Overriding Methods

❑A child class can (have the option to) 
override the definition of an inherited 
method in favor of its own
• that is, a child can redefine a method that it 

inherits from its parent
• the new method must have the same signature as 

the parent's method, but can have different 
code in the body

❑The method invoked is always the one 
defined in the child class, if the child class 
refines (overrides) a method



Lawyer class

// A class to represent lawyers.

public class Lawyer extends Employee {

    public Lawyer(String name) {

      super(name); 

 }

    // overrides getVacationDays from Employee class

    public int vacationDays() {

        return 15;           // one more week vacation

    }

    // overrides getVacationForm from Employee class

    public String vacationForm() {

        return "pink";

    }

    

    public void sue() {

        System.out.println("I'll see you in court!");

    }

} 26



Overriding 
and the @Override annotation
// A class to represent lawyers.

public class Lawyer extends Employee {

    public Lawyer(String name) {

      super(name); 

 }

    @Override // optional hint to compiler to check spelling

    public int vacationDays() {

        return 15;           // one more week vacation

    }

    @Override 

    public String vacationForm() {

        return "pink";

    }

    

    public void sue() {

        System.out.println("I'll see you in court!");

    }

} 27



28

Overloading vs. Overriding

❑ Overloading deals with 
multiple methods in 
the same class with 
the same name but 
different signatures

❑ Overloading lets you 
define a similar 
operation in different 
ways for different 
data

❑ Overriding deals with 
two methods, one in a 
parent class and one in 
a child class, that have 
the same signature

❑ Overriding lets you 
define a similar 
operation in different 
ways for different 
object types



29

Outline

❑Admin and recap

❑ Class inheritance
o why and how?

o inheritance and object construction

o inheritance and “mutation” (overriding)

o Good overriding design



Marketer class

// A class to represent marketers.

public class Marketer extends Employee {

   public Marketer(String name) {

      super(name); 

 }

   public void advertise() {

      System.out.println("Act while supplies last!");

   }

   // override

   public double pay() {

      return 60000.0;      // $60,000 = +20% of 50,000

   }

}

30

Anything you do not like about the design?



A Problem

public class Marketer extends Employee {

    public double pay() {

        return 60000.0;

    }

    ...

}

 Problem: The policy is that Marketer‘s 
salaries are based on the Employee’s base 
salary (20% more than base), but the pay 
code does not reflect this.

31



Motivation: Changes to Common Behavior

❑ Imagine a company-wide change affecting all 
employees.

❑  Example: Everyone is given a $10,000 raise due to 
inflation.
o The base employee salary is now $60,000.

o  We modify Employee’s pay method to reflect this policy 
change.

32



Modifying the superclass

// A class to represent employees in general (20-page manual).

public class Employee {

    public int hours() {

        return 40;           // works 40 hours / week

    }
    

    public double pay() {

        return 60000.0;      // $60,000.00 / year

    }
    

    ...

}

❑ Issue: the Marketer subclass is still incorrect.
 It has overridden pay to return another value.

❑ Good design: derived behavior is based on base 
behavior

33



Calling overridden methods

Subclasses can call overridden methods with super

 super.<method>(<parameters>)

– Exercise: Modify Marketer to derive pay 
for marketers from base pay.

34



Improved subclasses

public class Marketer extends Employee {

    public void advertise() {

        System.out.println("Act now while supplies last!");

    }

    // override and invoke the parent’s version

    public double pay() {

        return super.pay() * 1.2;

    }

    …

}

35



36

Outline

❑Admin and recap

❑ Class inheritance
o why and how?

o inheritance and object construction

o inheritance and “mutation” (overriding)

o inheritance and field access



37

Inheritance and Fields

❑Setting: To retain their lawyers, the firm 
changes pay policy so that a lawyer gets the 
base and $5000 for each year in the firm

public class Lawyer extends Employee {

    …

    public double pay() {

       return super.pay() + 5000 * years;

    }

    …

}

// years is a private field in Employee.

https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcR3InPYVkDuRLOzveTXxW0YyTTZi1b5Uo0pD8_Jkodow0IIPY9a



38

Problem

❑ Fields declared private cannot be 
accessed from subclasses
• Reason: subclassing cannot break encapsulation

• Q: how to get around this limitation?



39

Solution 1

❑Add an accessor for any field needed by 
the subclass

public class Employee {
    private String name; private int years;
    
    public Employee(String name, int initialYears) {
        this.name = name; years = initialYears;
    }

    public int getYears() {
        return years;
    }
    ...
}

public class Lawyer extends Employee {
    public Lawyer(String name, int years) {
        super(name, years);
    }
    
    public double pay() {
        return super.pay() + 5000 * getYears();
    }
    ...
}



40

Solution 2

❑ Java provides a third visibility modifier to 
denote fields/methods to be accessible by 
only child classes: protected

public class Employee {

    private String name;

    protect int years;
    

    public Employee(String name, int years) {

        this.name = name;

        this.years = years;

    }
    

…

}



41

Discussion

❑How to choose between the two designs?
▪ Design 1: Add public getYear()

▪ Design 2: make year protected

❑Use Design 1, unless the method is an 
implementation method (not accessable, 
not service method) 
❑ Adding public getYear() makes it available 

to not only child class, but also all other 
classes. 

❑ If you do not want this, use Design 2



42

Outline

❑Admin and recap

❑ Class inheritance
o why and how?

o inheritance and object construction

o inheritance and “mutation” (overriding)

o inheritance and field access

o inheritance hierarchy



Levels of inheritance

 Multiple levels of inheritance in a hierarchy are 
allowed.

 Example: A legal secretary is the same as a regular 
secretary but makes more money (10% more) and can 
file legal briefs.

 Exercise: Implement the LegalSecretary class.

43



Example: LegalSecretary class

// A class to represent legal secretaries.

public class LegalSecretary extends Secretary {

    public void fileLegalBriefs() {

        System.out.println("I could file all day!");

    }

    public double pay() {

        return super.pay() * 1.1 ; 

    }

}

44



Example: Partner class

❑ Partner is a senior lawyer that can get 
bonus. Thus it supports:
awardBonus(double bonus)

45



Example: Partner class

// A class to represent partner.

public class Partner extends Lawyer {

 private double bonus;

    public void awardBonus(double bonus) {

        this.bonus = bonus;

    }

    public double pay() {

        return super.pay() + bonus ; 

    }

}

46



47

Class Hierarchies

❑Many large-scale software systems define 
class hierarchies, where the root defines 
the common behaviors

Employee

Secretary Lawyer Marketer

LegalSecretary Partner



49

Outline

❑Admin and recap

❑ Class inheritance
o why and how?

o inheritance and object construction

o inheritance and “mutation” (overriding)

o inheritance and field access

o inheritance hierarchy

o inheritance hierarchy of Critters and event-
driven programming



Critters

❑ A simulation (game) world of animal objects (e.g., Ants, 
Birds, Cougars) with common behaviors such as
• eat eating food

• fight animal fighting

• getColor color to display

• getMove movement

• toString letter to display

50



The Critter Class

// abstract class means not implement every method

public abstract class Critter {

    public boolean eat()

    public Attack fight(String opponent)

           // ROAR, POUNCE, SCRATCH, FORFEIT

    public Color getColor()

    public Direction getMove(String[][] grid)

           // NORTH, SOUTH, EAST, WEST, CENTER

    public String toString()

     …

    // read the class for other methods available

}

51



Defining a Critter subclass

public class name extends Critter {

    ...

}

❑ extends Critter tells the simulator your class 
is a critter
• an example of inheritance

❑ Override methods to give each new type of animal 
distinct behaviors.

52



53

Example Critter World Class Hierarchy

Critter

Ant Bird Hippo

Vulture

Bulldog

Vulture秃鹫
Hippo河马
Bulldog斗牛犬



The Simulator (Controller)

❑The simulator is in 
CritterMain.java

❑ It searches local dir 
for all critters types

❑The simulator creates 
an array of critters

❑ "Go" →  loop, e.g.,

• move each animal (getMove)

• if two collide(碰撞), call each’s 
fight method on its behavior

• if is over food, call eat

%

Next 
move?

54



Simulator Pseudo-code
Critter[] critters = new Critter[N];

critters[0] = new Ant();

critters[1] = new Bird();

…

loop

  foreach critter i in critters

call getMove of critter i if it can move

  foreach critter i in critters

     if new pos of critter i results in fight

       ask how critter i will fight

     else if new pos finds food

        ask critter i whether it will eat

      else if new pos results in mate possibility

        ask if critter i will mate

   compute new state of critters

55



Critter Example: Stone

import java.awt.*;

public class Stone extends Critter {

      public Attack fight(String opponent) {

         return Attack.ROAR;    // ROAR(咆哮)... nothing beats that!

      }

      public Color getColor() {

         return Color.GRAY;     // stones are gray in color

      }

      public String toString() {

        return "St";            // the game displays a stone

      }

}

56



Event-Driven Programming

❑ Key concept: The simulator is in control, 
NOT your animal.
• Example: getMove can return only one move at 

a time.
getMove can't use loops to return a sequence 
of moves.

• It wouldn't be fair to let one animal make many moves 
in one turn!

• Your animal must keep state (as fields) so that 
it can make a single move, and know what moves 
to make later.

• We say that you focus on writing the callback 
functions of objects

57



Critter exercise: Cougar

❑Write a critter class Cougar (among the 

dumbest of all animals):

Method Behavior

constructor public Cougar()

eat Always eats.

fight Always roars.

getColor Blue if the Cougar has never fought; red if he has.

getMove Walks west until he finds food; then walks east 
until he finds food; then goes west and repeats.

toString "C"

Implement Cougar’s eat, fight, toString.
58



getMove

❑ How can a critter move west until it finds food and 
then moves to east until find food and repeat?
public Direction getMove(String[][] grid) {

    initial currentDirect = WEST

    loop 

      if (eat) {

         reverse currentDirect;

      print currentDirection;

}
 

59



getMove for Cougar

❑State machine

❑How to remember the state?
• a boolean instance variable:
boolean west

❑What is initial state and where to set it?
• In constructor: west = true;

❑Who/when updates the state?
• In eat(): reverse state

60

Move

West

Move

East

eat()

eat()



getColor for Cougar

❑State machine

❑How to remember the state?
• A boolean instance variable:
boolean fought

❑What is initial state and where to set it?
• In constructor: fought = false;

❑Who/when updates the state?
• In fight(): fought = true

61

! Has

fought

Has

fought

fight()

Blue if the Cougar has 

never fought; red if he has.



Cougar solution

import java.awt.*;  // for Color

public class Cougar extends Critter {

    private boolean west;

    private boolean fought;

    

    public Cougar() {

        west = true;

        fought = false;

    }

    

    public boolean eat() {

        west = !west;

        return true;

    }

    

    public Attack fight(String opponent) {

        fought = true;

        return Attack.POUNCE;

    }

    

    ...

62



Cougar solution

...

    

    public Color getColor() {

        if (fought) {

            return Color.RED;

        } else {

            return Color.BLUE;

        }

    }

    

    public Direction getMove(String[][] grid) {

        if (west) {

            return Direction.WEST;

        } else {

            return Direction.EAST;

        }

    }

    

    public String toString() {

        return "C";

    }

}

63



Comment: PS10 Development Strategy

❑Do one species at a time
• in ABC order from easier to harder

• debug printlns

❑Simulator helps you debug
• smaller width/height

• fewer animals

• "Tick" instead of "Go"

• "Debug" checkbox

• drag/drop to move animals

64



Testing critters

❑ Focus on one specific critter of one 
specific type
• Only spawn 1 of each animal, for debugging

❑Make sure your fields update properly
• Use println statements to see field values

❑ Look at the behavior one step at a time
• Use "Tick" rather than "Go"

65



66

Recap: Field/Method Access

❑Two approaches to access a field/method 
defined in parent class
• Parent class defines it as public
• Parent class defines it as protected

Access Modifier Who can access

private Only within the defining class

public Everywhere

protected The defining class and its 
descendent classes

- With the same package



Recap: The Critter Class Hierarchy

// abstract class means not implement every method

public abstract class Critter {

    public boolean eat()

    public Attack fight(String opponent)

           // ROAR, POUNCE, SCRATCH, FORFEIT

    public Color getColor()

    public Direction getMove(String[][] grid)

           // NORTH, SOUTH, EAST, WEST, CENTER

    public String toString()

     …

    // read the class for other methods available

}

Critter

Ant Bird Hippo

Vulture

Bulldog

67



Critters and Event-Driven Programming

❑ Key concepts: 
• The simulator is in control, 

NOT an animal.
• An animal must keep state (as 

fields) so that it can make a 
single move, and know what 
moves to make later.

• We say that event-driven 
programming (EDP) focuses on 
writing the callback functions 
of objects

❑ We will discuss how an EDP 
framework is designed. 

%

Next 
move?

68



Critter : Snake

Method Behavior

constructor public Snake()

eat Never eats

fight random pounce(猛扑) or roar

getColor Color(20, 50, 128)

getMove 1 E, 1 S; 2 W, 1 S; 3 E, 1 S; 4 W, 1 S; 5 E, ...

toString "S"

69



EDP for getMove

❑ Variables that determine
the state for getMove?
• Length of current cycle (east-west)

• Number of moves made in 
current cycle

❑What is the initial state?
• cycleLength = 1

• steps = 0

70



Non-EDP Version

A non-event driven version

cycleLength = 1; steps = 0;

do {

    while (steps < cycleLength)

         if cycleLength % 2 == 1
             go East

         else

                go West

         steps ++;

     go South

     cycleLength ++; steps = 0;

  } while (true);

71



Non-EDP-> EDP: Guarding Condition

72

steps < cycleLength

if (cycleLength % 2 == 1)

    go East

else

    go West

steps++;

steps == cycleLength

go South

cycleLength ++

steps=0;

cycleLength = 1; steps = 0;

do {

    while (steps < cycleLength)

         if cycleLength % 2 == 1
             go East

         else

                go West

         steps ++;

     go South

     cycleLength ++; steps = 0;

  } while (true);

Technique: determine the 
guarding condition (using state 
variables) on action statements



Snake solution
import java.awt.*;    // for Color

public class Snake extends Critter {
    private int cycleLength;   // # steps in curr. Horiz. cycle
    private int steps;         // # of cycle's steps already taken
    
    public Snake() {
        cycleLength = 1;
        steps = 0;
    }
    
    public Direction getMove() {

      if (steps < cycleLength) {

          steps++;

          if (cycleLength % 2 == 1) {

                return Direction.EAST;

            } else {

                return Direction.WEST;

            }

        } else {

           steps = 0;

           cycleLength ++;

           return Direction.SOUTH;

        }

    }

    
    public String toString() {
        return "S";
    }
}

steps < cycleLength

if (cycleLength % 2 == 1)

    go East

else

    go West

steps++;

steps == cycleLength

Go South

cycleLength ++

steps=0;
73



Comment: States

❑ Counting is helpful:
• How many total moves has this animal made?

• How many times has it eaten?  Fought?

❑ Remembering recent actions in fields may be helpful:
• Which direction did the animal move last?

• How many times has it moved that way?

• Did the animal eat the last time it was asked?

• How many steps has the animal taken since last eating?

• How many fights has the animal been in since last eating?

74


	Slide 1: Introduction to  Computational Thinking
	Slide 2
	Slide 3
	Slide 4: Inheritance
	Slide 5: Deriving Subclasses: Syntax
	Slide 6: Visualize Inheritance
	Slide 7: Visualize Inheritance
	Slide 8: Example:  The Law Firm(律师事务所)
	Slide 9: The Law Firm
	Slide 10: The Employee class
	Slide 11: Secretary without Reuse
	Slide 12: Improved Secretary code
	Slide 13
	Slide 14: Object Construction Example
	Slide 15: Object Construction Example
	Slide 16: Inheritance and Constructor
	Slide 17: Object Construction Example
	Slide 18: super and Constructor
	Slide 19: Exercise: Reuse Existing Class
	Slide 20: Two Options to Reuse an Existing Code
	Slide 21
	Slide 22: Motivation: Implementing the Lawyer class: Attempt 1
	Slide 23: Motivation: Implementing the Lawyer class: Attempt 1
	Slide 24: Problem
	Slide 25: Defining Methods in the Child Class: Overriding Methods
	Slide 26: Lawyer class
	Slide 27: Overriding  and the @Override annotation
	Slide 28: Overloading vs. Overriding
	Slide 29
	Slide 30: Marketer class
	Slide 31: A Problem
	Slide 32: Motivation: Changes to Common Behavior
	Slide 33: Modifying the superclass
	Slide 34: Calling overridden methods
	Slide 35: Improved subclasses
	Slide 36
	Slide 37: Inheritance and Fields
	Slide 38: Problem
	Slide 39: Solution 1
	Slide 40: Solution 2
	Slide 41
	Slide 42
	Slide 43: Levels of inheritance
	Slide 44: Example: LegalSecretary class
	Slide 45: Example: Partner class
	Slide 46: Example: Partner class
	Slide 47: Class Hierarchies
	Slide 49
	Slide 50: Critters
	Slide 51: The Critter Class
	Slide 52: Defining a Critter subclass
	Slide 53: Example Critter World Class Hierarchy
	Slide 54: The Simulator (Controller)
	Slide 55: Simulator Pseudo-code
	Slide 56: Critter Example: Stone
	Slide 57: Event-Driven Programming
	Slide 58: Critter exercise: Cougar
	Slide 59: getMove
	Slide 60: getMove for Cougar
	Slide 61: getColor for Cougar
	Slide 62: Cougar solution
	Slide 63: Cougar solution
	Slide 64: Comment: PS10 Development Strategy
	Slide 65: Testing critters
	Slide 66: Recap: Field/Method Access
	Slide 67: Recap: The Critter Class Hierarchy
	Slide 68: Critters and Event-Driven Programming
	Slide 69: Critter : Snake
	Slide 70: EDP for getMove
	Slide 71: Non-EDP Version
	Slide 72: Non-EDP-> EDP: Guarding Condition
	Slide 73: Snake solution
	Slide 74: Comment: States

