Introduction to
Computational Thinking

Polymorphism;
Event-Driven Programming

Qiao Xiang, Qingyu Song
https://sngroup.org.cn/courses/ct-
xmuf25/index.shtml
12/24/2025

This deck of slides are heavily based on cs112 at Yale University and cs101 at UCAS, respectively,
by courtesy of Dr. Y. Richard Yang and Dr. Zhiwei Xu.

Final Exam

3 One double-sided A4 page cheating sheet

Q Date, location: 10:30 AM - 12:30 PM, Dec
30, 2025, Xuewu Building 1, A206

3 Coverage:
https://sngroup.org.cn/courses/ct-
xmuf25/exam-coverage.html

Qutline

A Critters and objects coordination
A Polymorphism %75

Recap: Critters and Event-Driven Programming

0 Key concepts:

The simulator is in control,
NOT an animal.

- An animal must keep state (as
fields) so that it can make a
single move, and know what
moves to make later.

- We say that event-driven
programming (EDP) focuses on
writing the callback functions
of objects

Recap: Critter : Snake

Method Behavior
constructor | public Snake ()
eat Never eats
fight random pounce(¥#t) or roar

getColor |Color(20, 50, 128)

getMove |1E,1S;2W,1S;3E 1S;4W,1S;5FE, ...

toString "s"

=
m

15

15

15

—y

ELELE

Recap: EDP for getMove

5

d Variables that determine lsﬂ:

aw s

the state for getMove? T
5 W

- Length of current cycle (east-west ZE é@

- Number of moves made in
current cycle

3 What is the initial state?
- cycleLength =1
- steps=0

Recap: Non-EDP Version

A non-event driven version

cycleLength = 1; steps = O;
do {

5

15
lSI gé

4 W

15

BW

while (steps < cycleLength)

if cycleLength 7% 2 ==1
go East
else
go West
steps ++;

go South
cycleLength ++; steps = O;

} while (true);

Recap: Non-EDP-> EDP: Guarding

Technique: determine the
guarding condition (using state
variables) on action statements

Condition

cycleLength = 1; steps = O; if (cycleLength % 2 ==1)
do { go East
. clse
while (steps < cycleLength) oo s
|f CYCleLengTh cyo 2 ==1 Steps—|——|—;
go East
else
go West
steps ++;
go South 20 South
} while (frue); steps=0;

Snake solution

import java.awt.*; // for Color

public class Snake extends Critter {
private int cyclelength;

// # steps in curr. Hori
private int steps;

// # of cycle's steps al

public Snake () {
cycleLength = 1;

steps = 0;
t
public Direction getMove () {
if (steps < cyclelength) ({
steps++;
if (cycleLength % 2 = 1) {

return Direction.EAST,
} else {

return Direction.WEST,
}
} else {

steps = 0;

cycleLength ++;

return Direction.SOUTH,

}

public String toString () {
return "S";
}

Comment. States

Q Counting is helpful:
How many total moves has this animal made?
How many times has it eaten? Fought?

O Remembering recent actions in fields may be helpful:

Which direction did the animal move last?
- How many times has it moved that way?

Did the animal eat the last time it was asked?
How many steps has the animal taken since last eating?
How many fights has the animal been in since last eating?

10

Qutline

A Critters and objects coordination
A Polymorphism %7

11

Motivation

A The controller
implemented
in CritterMain.java works
on all critters objects,
even of critter types
defined in the future.

d How does one write such
a highly reusable,
extensible program?

12

What is Polymorphism?

A polymorphism: Ability for the same code to be
used with different types of objects and
behave differently according to the types of
objects.

A The foundation of polymorphism is dynamic
typing: the method invoked is always
determined by the object, not the class.

13

Recap: Reference Variables

ad Interaction with an object occurs through
object reference variables

Q An object reference variable holds the
reference (address, the location) of an
object

ChessPiece bishopl = new ChessPiece();

bishopl i

14

Recap: Object Reference Variable

d Object reference variable assignment
copies address, creating aliases

bishop?2

Before

bishopl bishop?

‘1l

bishopl;

After

bishopl bishop?2

1/

I\

15

Requirements on Polymorphic Code

x can point to different
types of objects

—

x.method () ;

\\ method() exists in
X.method () \\I these different objects

method() behaves
differently

polymorphism: Ability for the same code to be used with
different types of objects and behave differently
according to the types of objects.

Polymorphism through Inheritance

0 Same reference points to different types
of objects

- A variable of type T can hold an object of class
T or descendent(fGX) of T, e.q.,
Employee emp = new Employee (“EdA”);
emp
emp

new Lawyer ("Larry) ;
new LegalSecretary('Lisa’);

d The method used exists in all the objects
- If the method is defined in the base class

A The method may behave differently
- The child class can override the method

17

Polymorphism through Inheritance

A You can call any methods defined in the
based class T (e.g., Employee) class on

polymorphic reference of type T (e.g., emp)

d When you invoke a method through a
polymorphic reference variable, it is the
type of the object being referenced, not
the reference type, that determines
which method is invoked.

A Careful use of polymorphic references can
lead to elegant, robust, highly extensible
software designs

18

Example: Polymorphic Variable

Employee emp; // base type

emp = new Lawyer ("Larry") ;
System.out.println (emp.vacationDays ()) ;
// OUTPUT: 15

System.out.println (emp.vacationForm());
// OUTPUT: pink

emp = new LegalSecretary(“Lisa") ;
System.out.println (emp.vacationDays());
// OUTPUT: 10

System.out.println (emp.vacationForm());
// OUTPUT: vyellow

19

Example: Polymorphic Variable

Reference
variable type

emp.vacatio

Employee emp

// 15

emp.vacatyonDays ()

// 10

Object
type: Lawyer

Object
type: Secretary

.

20

Example: Polymorphic Method

A Define a method that can apply to all
objects of a base type or its derived types.

d This is how print in PrintStream is
defined:
void print(Object obj) {
// all objects have the t0String() method
// convert to string and then output

}

21

Example: Polymorphic Method

public class EmployeeMain {
public static void main(String[] args) {
Lawyer lisa = new Lawyer (“Lisa”);
Secretary steve = new Secretary (“Steve”);
printInfo (lisa)<:
printInfo (stev
}

public static void printInfo (Employee empl) {

System.out.println("salary: " + empl.pay());

System.out.println("v.days: " + empl.vacationDays()) ;

System.out.println("v.form: " + empl.vacationForm()) ;
(

System.out.println();

}

OUTPUT:

salary: 50000.0 salary: 50000.0
v.days: 15 v.days: 10
v.form: pink v.form: yellow

22

Polymorphic Arrays

dA common usage of polymorphism
is to define an array of a base
type, but different entries refer
to different types of objects
» To handle a heterogeneous
population of objects with

uniformity, achieving generic
programming

23

Example: CritterMain Interndl

Critter|[]

Y

critters = {
new Ant (),

new Cougar (),
new Snake (),
new Bulldog()

while (true)
(1=0;

newPos =

for i<critters.length; i++)
critters[i].getMove () ;
disp = critters[i].toString() ;

. draw disp at pos

1 2

Not dependent on
any specific critters
but only the generic
Critter concept

Example: Polymorphic Array on
Firm

public class Staff {
private Employee[] stafflist;
public Staff () {
stafflist = new Employee[4];

stafflList[0] = new Lawyer ("Lisa"); Works on
stafflList[l] = new Secretary("Sally"); anyrnbcof
stafflList[2] = new Marketer ("Mike") ; Employee objects
stafflist[3] = new LegalSecretary ("Lynne"

public void payday() {
for (int count = 0; count < stafflist.length; count++) {
System.out.printf("s-10s:", staffList[count].name()) ;
System.out.printf ("$%$.2f\n", staffList[count].pay/())
System.out.println("-—=-———=——=——————————=—————————————— ") ;

Example: Extending the Program:
Hourly

A Include a new type of secretary who works
variable number of hours and is paid by the
hours.

26

Extending the Program: Hourly

public class Hourly extends Secretary {
private double payRate;
private int hours;

public Hourly(String name, double payRate)
super (name) ;
this.payRate = payRate;
hours = 0;

}

public void addHours (int hours) ({
this.hours += hours;

}

public int hours() { return hours; }
public double pay() {return hours () * payRate;}

Polymorphic Array Handles Changes

public class Staff {
private Employee[] stafflist;
public Staff () {
stafflList = new Employee[5];

stafflList[0] = new Lawyer ("Lisa");

stafflList[1l] = new Secretary ("Sally");

stafflList[2] = new Marketer ('"Mike") ; No need to
stafflList[3] = new LegalSecretary("Lynne"); changethe
Hourly holly = new Hourly(“Holly"); holly.addHours (10) ; payday method at
stafflList[4] = holly;

all.

public void payday () {
for (int count = 0; count < stafflist.length; count++) {
System.out.printf ("s-10s:", staffList[count].name()) ;
System.out.printf ("s$%$.2f\n", staffList[count].pay())
System.out.println("-—---—-—=——=—=—————————————————————— ") ;

Payroll

+ main (args : String[]) : void

Staff

- staffList : Employee|]

The pay-roll of a firm

Employee

+ payday() : void

name : String

+ toString() : String
+ pay() : double

Hourly

- payRate: double

+ pay() : double

Lawyer

+ toString() : String
+ pay() . double

Partner

- bonus : double

+ awardBonus(bonus : double) : void
+ pay() : double

29

Comment: Variable Type and Method

A Through a given type of reference variable,
we can invoke only the methods defined in
that type

class Employee{
public double pay ()
{..}

}

class Lawyer extends Employee {
public void sue ()
{..}

}

Employee ed = new Lawyer (‘Larry) ;

Can we do the following statements:

ed.pay () ;
ed.sue () ;

30

Comment: Variable Type and Method

d We can “promote” an object back to its
original type through an explicit narrowing
cast:

stafflist = new Employee[5];

staffList[0] = new Lawyer("Lisa");
stafflist[1l] = new Secretary("Sally");
stafflist[2] = new Marketer ("Mike") ;
stafflList[3] = new LegalSecretary("Lynne") ;
stafflist[4] = new Hourly(“Holly");

Hourly holly (Hourly) staffList[4];

If the type of object

holly.addHours (5); Sﬁg;féizz
Hourly, program

CITOLT.

31

Summary: Polymorphism

A polymorphism: Ability for the same code to be
used with different types of objects and
behave differently with each.

.+ CritterMain can interact with any type of critter.
» Each one moves, fights, etc. in its own way.

- Firm can use one method to pay for any type of
Employee.
* Each one is paid in its own way.
- Print

32

Qutline

Q Class inheritance
o polymorphism, and polymorphism through inheritance

d Interface as an alternative of inheritance
o motivation
o syntax

33

Interface Syntax

QdAn interface is a collection of
constants and abstract methods

- abstract method: a method header
without a method body; we declare an

abstract method using the modifier
abstract

. since all methods in an interface are
abstract, the abstract modifier is

usually left of f

34

Interface: Example

interface is a reserved word

public interface Movable {

public
public
public
public

This interface describes the

double getSpeed() ;

void
void
int

setSpeed (double speed) ;
setDirection (int direction) ;
getDirection () ;

A semicolon follows each method header

behaviors common to all immediately
movable things.
(Every Movable thing should No method in an

have these methods.)

interface has a definition (body)
35

Implementing an interface

Q general syntax:
public class <name> implements <interface names> |

}

Example:
public class Bicycle implements Movable ({

}

(What must be true about the Bicycle class for it to
compile?)

36

Interface Implementation

a If we write a class that claims to be an
interface (e.g., Movable) , but doesn't
implement all of the methods defined in the
interface, it will not compile.

- Example:
public class Bicycle implements Movable {

}

- The compiler error message:

Bicycle.java:1: Bicycle 1s not abstract
and does not override abstract method
getSpeed () 1n Movable

37

Example: Shape interface

ad An interface for shapes:

public interface Shape {
public double areal();

J

- This interface describes the common features
that all shapes should have in your design.
(Every shape has an area.)

38

Example: Circle class

// Represents circles.
public class Circle implements Shape {
private double radius;

// Constructs a new circle with the given radius.
public Circle (double radius) {

this.radius = radius;
}

// Returns the area of this circle.
public double area () {

return Math.PI * radius * radius;
}

39

Example: Rectangle class

// Represents person.
public class Person implements Shape {

private double weight;
private double height;

public Person (double weight, double height) {

this.weight = weight;
this.height height;

}

// Returns the area of a person using Du Bois formula

public double area () {
ower (weight, 0.425)

return 0.007184 * Math.p
* Math.power (height, 0.725);

}
// other methods

Summary: Interfaces

0 interface: A list of methods that classes can
promise to implement.

Analogous to non-programming idea of roles or
certifications

- "I'm certified as a CPA accountant.”

Q interface vs inheritance

inheritance gives an is-a relationship and code-sharing.

- A Lawyer object can be treated as an Employee, and Lawyer
inherits Employee's code.

interface gives an is-a relationship without code sharing.

41

Qutline

a Admin and recap
A Class inheritance
o polymorphism, and polymorphism through inheritance

0O Interface as an alternative of inheritance
o motivation
o syn‘rax
o polymorphism through inheritance

42

Satisfy Polymorphism Requirements using
Interface

0 Same reference points to different types
of objects

- A variable of interface type T can hold an
object of any class implementing T.

Movable mobj] = new Bicyle();

d The method used exists in all the objects

- Using an interface reference, you can only
invoke the methods defined in the interface;

- A class must implement the methods defined in
the interface

A The method may behave differently

- Different class can implement the method
differently

Interface Polymorphism: Example

44

public static void printShapelInfo (Shape s) {
System.out.println("area : " + s.areal());
System.out.println() ;

}

Any object that implements the interface may be passed as the

parameter to the above method.

Circle circ = new Circle(12.0);
Person john = new Person (60, 175);
printShapeInfo (circ) ;
printShapeInfo (john) ;

Interface Polymorphism:

__Example

O We can create an array of an interface type, and

store any object implementing that interface as an
element.
Circle circ = new Circle(12.0);

Person john = new John (60, 175);
YaleStudent nicole = new YaleStudent () ;

Shape[] shapes = {circ, john, nicole};

for (int 1 = 0; 1 < shapes.length; i++) {
printShapelInfo (shapes|[i]);

}

Each element of the array executes the appropriate

behavior for its object when it is passed to the
printShapeInfo method

45

Interface

A An interface provides an abstraction to
write reusable, general programs

A Instead of writing a program for a single
class (hierarchy) of objects, we want to
write a program to handle all classes with a
given set of behaviors/properties

- An interface is an abstraction for the common
behaviors of these behaviors

a Often interface represents abstract
concepts

46

Summary: Using Interface for General Programming

d When defining a class or method (e.g.,
sorting), think about the essence (most
general) properties/behaviors of the
objects you require

Q Define those properties in an interface

ad Implement the class/method for the
inferface only so that your design is the
most general |

47

	Slide 1: Introduction to Computational Thinking
	Slide 2
	Slide 3
	Slide 4: Recap: Critters and Event-Driven Programming
	Slide 5: Recap: Critter : Snake
	Slide 6: Recap: EDP for getMove
	Slide 7: Recap: Non-EDP Version
	Slide 8: Recap: Non-EDP-> EDP: Guarding Condition
	Slide 9: Snake solution
	Slide 10: Comment: States
	Slide 11
	Slide 12: Motivation
	Slide 13: What is Polymorphism?
	Slide 14: Recap: Reference Variables
	Slide 15: Recap: Object Reference Variable
	Slide 16: Requirements on Polymorphic Code
	Slide 17: Polymorphism through Inheritance
	Slide 18: Polymorphism through Inheritance
	Slide 19: Example: Polymorphic Variable
	Slide 20: Example: Polymorphic Variable
	Slide 21: Example: Polymorphic Method
	Slide 22: Example: Polymorphic Method
	Slide 23: Polymorphic Arrays
	Slide 24: Example: CritterMain Internal
	Slide 25: Example: Polymorphic Array on Firm
	Slide 26: Example: Extending the Program: Hourly
	Slide 27: Extending the Program: Hourly
	Slide 28: Polymorphic Array Handles Changes
	Slide 29
	Slide 30: Comment: Variable Type and Method
	Slide 31: Comment: Variable Type and Method
	Slide 32: Summary: Polymorphism
	Slide 33
	Slide 34: Interface Syntax
	Slide 35: Interface: Example
	Slide 36: Implementing an interface
	Slide 37: Interface Implementation
	Slide 38: Example: Shape interface
	Slide 39: Example: Circle class
	Slide 40: Example: Rectangle class
	Slide 41: Summary: Interfaces
	Slide 42
	Slide 43: Satisfy Polymorphism Requirements using Interface
	Slide 44: Interface Polymorphism: Example
	Slide 45: Interface Polymorphism: Example
	Slide 46: Interface
	Slide 47: Summary: Using Interface for General Programming

