
Introduction to
Computational Thinking

Polymorphism;
Event-Driven Programming

Qiao Xiang, Qingyu Song

https://sngroup.org.cn/courses/ct-
xmuf25/index.shtml

12/24/2025

This deck of slides are heavily based on cs112 at Yale University and cs101 at UCAS, respectively,

by courtesy of Dr. Y. Richard Yang and Dr. Zhiwei Xu.

2

Final Exam

❑One double-sided A4 page cheating sheet

❑Date, location: 10:30 AM - 12:30 PM, Dec
30, 2025, Xuewu Building 1, A206

❑ Coverage:
https://sngroup.org.cn/courses/ct-
xmuf25/exam-coverage.html

3

Outline

❑ Critters and objects coordination

❑ Polymorphism 多态

Recap: Critters and Event-Driven Programming

❑ Key concepts:
• The simulator is in control,

NOT an animal.
• An animal must keep state (as

fields) so that it can make a
single move, and know what
moves to make later.

• We say that event-driven
programming (EDP) focuses on
writing the callback functions
of objects %

Next
move?

4

Recap: Critter : Snake

Method Behavior

constructor public Snake()

eat Never eats

fight random pounce(猛扑) or roar

getColor Color(20, 50, 128)

getMove 1 E, 1 S; 2 W, 1 S; 3 E, 1 S; 4 W, 1 S; 5 E, ...

toString "S"

5

Recap: EDP for getMove

❑ Variables that determine
the state for getMove?
• Length of current cycle (east-west)

• Number of moves made in
current cycle

❑What is the initial state?
• cycleLength = 1

• steps = 0

6

Recap: Non-EDP Version

A non-event driven version

cycleLength = 1; steps = 0;

do {

 while (steps < cycleLength)

 if cycleLength % 2 == 1
 go East

 else

 go West

 steps ++;

 go South

 cycleLength ++; steps = 0;

 } while (true);

7

Recap: Non-EDP-> EDP: Guarding
Condition

8

steps < cycleLength

if (cycleLength % 2 == 1)

 go East

else

 go West

steps++;

steps == cycleLength

go South

cycleLength ++

steps=0;

cycleLength = 1; steps = 0;

do {

 while (steps < cycleLength)

 if cycleLength % 2 == 1
 go East

 else

 go West

 steps ++;

 go South

 cycleLength ++; steps = 0;

 } while (true);

Technique: determine the
guarding condition (using state
variables) on action statements

Snake solution
import java.awt.*; // for Color

public class Snake extends Critter {
 private int cycleLength; // # steps in curr. Horiz. cycle
 private int steps; // # of cycle's steps already taken

 public Snake() {
 cycleLength = 1;
 steps = 0;
 }

 public Direction getMove() {

 if (steps < cycleLength) {

 steps++;

 if (cycleLength % 2 == 1) {

 return Direction.EAST;

 } else {

 return Direction.WEST;

 }

 } else {

 steps = 0;

 cycleLength ++;

 return Direction.SOUTH;

 }

 }

 public String toString() {
 return "S";
 }
}

steps < cycleLength

if (cycleLength % 2 == 1)

 go East

else

 go West

steps++;

steps == cycleLength

Go South

cycleLength ++

steps=0;
9

Comment: States

❑ Counting is helpful:
• How many total moves has this animal made?

• How many times has it eaten? Fought?

❑ Remembering recent actions in fields may be helpful:
• Which direction did the animal move last?

• How many times has it moved that way?

• Did the animal eat the last time it was asked?

• How many steps has the animal taken since last eating?

• How many fights has the animal been in since last eating?

10

11

Outline

❑ Critters and objects coordination

❑ Polymorphism 多态

Motivation

❑The controller
implemented
in CritterMain.java works
on all critters objects,
even of critter types
defined in the future.

❑How does one write such
a highly reusable,
extensible program?

%

Next
move?

12

What is Polymorphism?

❑ polymorphism: Ability for the same code to be

used with different types of objects and

behave differently according to the types of

objects.

❑The foundation of polymorphism is dynamic

typing: the method invoked is always

determined by the object, not the class.

13

14

Recap: Reference Variables

❑ Interaction with an object occurs through
object reference variables

❑An object reference variable holds the
reference (address, the location) of an
object

 ChessPiece bishop1 = new ChessPiece();

bishop1

15

Recap: Object Reference Variable

❑Object reference variable assignment
copies address, creating aliases

 bishop2 = bishop1;

Before

bishop1 bishop2

After

bishop1 bishop2

Requirements on Polymorphic Code

X x;

…

x.method();

…

x.method();

x can point to different

types of objects

method() exists in

these different obejcts

method() exists in

these different objects

method() exists in

these different obejcts

method() behaves

differently

polymorphism: Ability for the same code to be used with

different types of objects and behave differently

according to the types of objects.
16

Polymorphism through Inheritance

❑Same reference points to different types
of objects
• A variable of type T can hold an object of class
T or descendent(后代) of T, e.g.,

 Employee emp = new Employee(“Ed”);

 emp = new Lawyer(“Larry”);
 emp = new LegalSecretary(“Lisa”);

❑The method used exists in all the objects
• If the method is defined in the base class

❑The method may behave differently
• The child class can override the method

17

Polymorphism through Inheritance

❑ You can call any methods defined in the
based class T (e.g., Employee) class on
polymorphic reference of type T (e.g., emp)

❑When you invoke a method through a
polymorphic reference variable, it is the
type of the object being referenced, not
the reference type, that determines
which method is invoked.

❑ Careful use of polymorphic references can
lead to elegant, robust, highly extensible
software designs

18

Example: Polymorphic Variable

Employee emp; // base type

emp = new Lawyer("Larry");

System.out.println (emp.vacationDays());

// OUTPUT: 15

System.out.println (emp.vacationForm());

// OUTPUT: pink

emp = new LegalSecretary(“Lisa");

System.out.println (emp.vacationDays());

// OUTPUT: 10

System.out.println (emp.vacationForm());

// OUTPUT: yellow

19

Example: Polymorphic Variable

20

Employee emp

Reference

variable type

Object

type: Lawyer

Object

type: Secretary

emp.vacationDays()

// 15

emp.vacationDays()

// 10

Example: Polymorphic Method

❑Define a method that can apply to all
objects of a base type or its derived types.

❑This is how print in PrintStream is
defined:
void print(Object obj) {
 // all objects have the toString() method
 // convert to string and then output
}

21

Example: Polymorphic Method

public class EmployeeMain {

 public static void main(String[] args) {

 Lawyer lisa = new Lawyer(“Lisa”);

 Secretary steve = new Secretary(“Steve”);

 printInfo(lisa);
 printInfo(steve);

 }

 public static void printInfo(Employee empl) {
 System.out.println("salary: " + empl.pay());

 System.out.println("v.days: " + empl.vacationDays());

 System.out.println("v.form: " + empl.vacationForm());

 System.out.println();

 }

}

OUTPUT:

salary: 50000.0 salary: 50000.0
v.days: 15 v.days: 10
v.form: pink v.form: yellow

22

Polymorphic Arrays

❑A common usage of polymorphism
is to define an array of a base
type, but different entries refer
to different types of objects
• To handle a heterogeneous

population of objects with
uniformity, achieving generic
programming

23

Example: CritterMain Internal

index 0 1 2 3

Critter[] critters = {

new Ant(),

 new Cougar(),

 new Snake(),

 new Bulldog()

};

while (true)

 for (i=0; i<critters.length; i++)

 newPos = critters[i].getMove();

 disp = critters[i].toString();

 … draw disp at pos

Not dependent on

any specific critters

but only the generic

Critter concept

Example: Polymorphic Array on
Firm
public class Staff {

 private Employee[] staffList;

 public Staff() {

 staffList = new Employee[4];

 staffList[0] = new Lawyer("Lisa");

 staffList[1] = new Secretary("Sally");

 staffList[2] = new Marketer("Mike");

 staffList[3] = new LegalSecretary("Lynne");

 }

 public void payday() {

 for (int count = 0; count < staffList.length; count++) {

 System.out.printf("%-10s:", staffList[count].name());

 System.out.printf("$%.2f\n", staffList[count].pay());

 System.out.println("-----------------------------------");

 }

 }

}

Works on

any mix of

Employee objects

Example: Extending the Program:
Hourly

❑ Include a new type of secretary who works
variable number of hours and is paid by the
hours.

26

Extending the Program: Hourly

public class Hourly extends Secretary {

 private double payRate;

 private int hours;

 public Hourly(String name, double payRate)

 super(name);

 this.payRate = payRate;

 hours = 0;

 }

 public void addHours(int hours) {

 this.hours += hours;

 }

 public int hours() { return hours; }

 public double pay() {return hours() * payRate;}

}

27

Polymorphic Array Handles Changes

public class Staff {

 private Employee[] staffList;

 public Staff() {

 staffList = new Employee[5];

 staffList[0] = new Lawyer("Lisa");

 staffList[1] = new Secretary("Sally");

 staffList[2] = new Marketer("Mike");

 staffList[3] = new LegalSecretary("Lynne");

 Hourly holly = new Hourly(“Holly"); holly.addHours(10);

 staffList[4] = holly;

 }

 public void payday() {

 for (int count = 0; count < staffList.length; count++) {

 System.out.printf("%-10s:", staffList[count].name());

 System.out.printf("$%.2f\n", staffList[count].pay());

 System.out.println("-----------------------------------");

 }

 }

}

No need to

change the

payday method at

all.

29

Employee

name : String

+ toString() : String

+ pay() : double

Hourly

- payRate: double

+ pay() : double

Lawyer

+ toString() : String

+ pay() : double

Partner

- bonus : double

+ awardBonus(bonus : double) : void

+ pay() : double

Payroll

+ main (args : String[]) : void

- staffList: staffMemeber[]

Staff

+ payday() : void

- staffList : Employee[]

The pay-roll of a firm

30

Comment: Variable Type and Method

❑Through a given type of reference variable,
we can invoke only the methods defined in
that type

Can we do the following statements:
 ed.pay();

 ed.sue();

Employee ed = new Lawyer(“Larry”);

class Employee{

 public double pay()

 {…}

}

class Lawyer extends Employee {

 public void sue()

 {…}

}

31

Comment: Variable Type and Method

❑We can “promote” an object back to its
original type through an explicit narrowing
cast:

staffList = new Employee[5];

staffList[0] = new Lawyer("Lisa");

staffList[1] = new Secretary("Sally");

staffList[2] = new Marketer("Mike");

staffList[3] = new LegalSecretary("Lynne");

staffList[4] = new Hourly(“Holly");

Hourly holly = (Hourly)staffList[4];

holly.addHours (5);

If the type of object

referred to by

staff[4] is not

Hourly, program

error.

Summary: Polymorphism

❑ polymorphism: Ability for the same code to be

used with different types of objects and

behave differently with each.

• CritterMain can interact with any type of critter.
• Each one moves, fights, etc. in its own way.

• Firm can use one method to pay for any type of
Employee.

• Each one is paid in its own way.

• Print

32

33

Outline

❑ Class inheritance
o polymorphism, and polymorphism through inheritance

❑ Interface as an alternative of inheritance
o motivation

o syntax

34

Interface Syntax

❑An interface is a collection of
constants and abstract methods
• abstract method: a method header

without a method body; we declare an
abstract method using the modifier
abstract

• since all methods in an interface are
abstract, the abstract modifier is
usually left off

35

Interface: Example

public interface Movable {

 public double getSpeed();

 public void setSpeed(double speed);

 public void setDirection(int direction);

 public int getDirection();

}

interface is a reserved word

No method in an

interface has a definition (body)

A semicolon follows each method header

immediately
This interface describes the

behaviors common to all

movable things.

(Every Movable thing should

have these methods.)

Implementing an interface

❑ general syntax:
 public class <name> implements <interface names> {
 ...

 }

• Example:
 public class Bicycle implements Movable {

 ...

 }

 (What must be true about the Bicycle class for it to
compile?)

36

Interface Implementation

❑ If we write a class that claims to be an
interface (e.g., Movable) , but doesn't
implement all of the methods defined in the
interface, it will not compile.

• Example:
 public class Bicycle implements Movable {

 }

• The compiler error message:
 Bicycle.java:1: Bicycle is not abstract

and does not override abstract method

getSpeed() in Movable
37

Example: Shape interface

❑An interface for shapes:

 public interface Shape {

 public double area();

 }

• This interface describes the common features
that all shapes should have in your design.
(Every shape has an area.)

38

Example: Circle class

// Represents circles.
public class Circle implements Shape {
 private double radius;

 // Constructs a new circle with the given radius.
 public Circle(double radius) {
 this.radius = radius;
 }

 // Returns the area of this circle.
 public double area() {
 return Math.PI * radius * radius;
 }

}

39

Example: Rectangle class

// Represents person.
public class Person implements Shape {
 private double weight;
 private double height;
 …

 public Person(double weight, double height) {
 this.weight = weight;
 this.height = height;
 }

 // Returns the area of a person using Du Bois formula
 public double area() {
 return 0.007184 * Math.power(weight, 0.425)

 * Math.power(height, 0.725);
 }

 // other methods
}

40

41

Summary: Interfaces

❑ interface: A list of methods that classes can
promise to implement.
• Analogous to non-programming idea of roles or

certifications
• "I'm certified as a CPA accountant.”

❑ interface vs inheritance
• inheritance gives an is-a relationship and code-sharing.

• A Lawyer object can be treated as an Employee, and Lawyer
inherits Employee's code.

• interface gives an is-a relationship without code sharing.

42

Outline

❑ Admin and recap

❑ Class inheritance
o polymorphism, and polymorphism through inheritance

❑ Interface as an alternative of inheritance
o motivation

o syntax

o polymorphism through inheritance

Satisfy Polymorphism Requirements using
Interface

❑Same reference points to different types
of objects
• A variable of interface type T can hold an

object of any class implementing T.
 Movable mobj = new Bicyle();

❑The method used exists in all the objects
• Using an interface reference, you can only

invoke the methods defined in the interface;

• A class must implement the methods defined in
the interface

❑The method may behave differently
• Different class can implement the method

differently

44

Interface Polymorphism: Example

public static void printShapeInfo(Shape s) {
 System.out.println("area : " + s.area());
 System.out.println();
 }

• Any object that implements the interface may be passed as the
parameter to the above method.

 Circle circ = new Circle(12.0);

 Person john = new Person(60, 175);

 printShapeInfo(circ);

 printShapeInfo(john);

45

Interface Polymorphism:
Example
❑ We can create an array of an interface type, and

store any object implementing that interface as an
element.

 Circle circ = new Circle(12.0);

 Person john = new John(60, 175);

 YaleStudent nicole = new YaleStudent();

 Shape[] shapes = {circ, john, nicole};

 for (int i = 0; i < shapes.length; i++) {

 printShapeInfo(shapes[i]);

 }

• Each element of the array executes the appropriate
behavior for its object when it is passed to the
printShapeInfo method

46

Interface

❑An interface provides an abstraction to
write reusable, general programs

❑ Instead of writing a program for a single
class (hierarchy) of objects, we want to
write a program to handle all classes with a
given set of behaviors/properties
• An interface is an abstraction for the common

behaviors of these behaviors

❑Often interface represents abstract
concepts

Summary: Using Interface for General Programming

❑When defining a class or method (e.g.,
sorting), think about the essence (most
general) properties/behaviors of the
objects you require

❑Define those properties in an interface

❑ Implement the class/method for the
interface only so that your design is the
most general !

47

	Slide 1: Introduction to Computational Thinking
	Slide 2
	Slide 3
	Slide 4: Recap: Critters and Event-Driven Programming
	Slide 5: Recap: Critter : Snake
	Slide 6: Recap: EDP for getMove
	Slide 7: Recap: Non-EDP Version
	Slide 8: Recap: Non-EDP-> EDP: Guarding Condition
	Slide 9: Snake solution
	Slide 10: Comment: States
	Slide 11
	Slide 12: Motivation
	Slide 13: What is Polymorphism?
	Slide 14: Recap: Reference Variables
	Slide 15: Recap: Object Reference Variable
	Slide 16: Requirements on Polymorphic Code
	Slide 17: Polymorphism through Inheritance
	Slide 18: Polymorphism through Inheritance
	Slide 19: Example: Polymorphic Variable
	Slide 20: Example: Polymorphic Variable
	Slide 21: Example: Polymorphic Method
	Slide 22: Example: Polymorphic Method
	Slide 23: Polymorphic Arrays
	Slide 24: Example: CritterMain Internal
	Slide 25: Example: Polymorphic Array on Firm
	Slide 26: Example: Extending the Program: Hourly
	Slide 27: Extending the Program: Hourly
	Slide 28: Polymorphic Array Handles Changes
	Slide 29
	Slide 30: Comment: Variable Type and Method
	Slide 31: Comment: Variable Type and Method
	Slide 32: Summary: Polymorphism
	Slide 33
	Slide 34: Interface Syntax
	Slide 35: Interface: Example
	Slide 36: Implementing an interface
	Slide 37: Interface Implementation
	Slide 38: Example: Shape interface
	Slide 39: Example: Circle class
	Slide 40: Example: Rectangle class
	Slide 41: Summary: Interfaces
	Slide 42
	Slide 43: Satisfy Polymorphism Requirements using Interface
	Slide 44: Interface Polymorphism: Example
	Slide 45: Interface Polymorphism: Example
	Slide 46: Interface
	Slide 47: Summary: Using Interface for General Programming

