ematics and
pplications

Introductory Lecture
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What is Discrete Mathematics?

Discrete mathematics is the part of mathematics devoted
to the study of discrete (as opposed to continuous) objects.

Calculus deals with continuous objects and is not part of
discrete mathematics.

Examples of discrete objects: integers, steps taken by a
computer program, distinct paths to travel from point A to
point B on a map along a road network, ways to pick a
winning set of numbers in a lottery.

A course in discrete mathematics provides the
mathematical background needed for all subsequent
courses in computer science and for all subsequent courses
in the many branches of discrete mathematics.



ds of Problems Solved Using

Discrete Mathematics

How many ways can a password be chosen following
specific rules?

How many valid Internet addresses are there?
What is the probability of winning a particular lottery?
[s there a link between two computers in a network?

How can I identify spam email messages?

How can I encrypt a message so that no unintended
recipient can read it?

How can we build a circuit that adds two integers?



s of Problems Solved Using
Discrete Mathematics

What is the shortest path between two cities using a
transportation system?

Find the shortest tour that visits each of a group of cities
only once and then ends in the starting city.

How can we reEresent English sentences so that a computer
can reason with them?

How can we prove that there are infinitely many prime
numbers?

How can a list of integers be sorted so that the integers are
in increasing order?

How many steps are required to do such a sorting?

How can it be proved that a sorting algorithm always
correctly sorts a list?
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~~Goals of a Course in Discrete
Mathematics

Mathematical Reasoning: Ability to read,
understand, and construct mathematical arguments
and proofs.

Combinatorial Analysis: Techniques for counting
objects of different kinds.

Discrete Structures: Abstract mathematical
structures that represent objects and the relationships
between them. Examples are sets, permutations,
relations, graphs, trees, and finite state machines.
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-Goals of a Course in Discrete
Mathematics

Algorithmic Thinking: One way to solve many problems is to
specify an algorithm. An algorithm is a sequence of steps that
can be followed to solve any instance of a particular problem.
Algorithmic thinking involves specifying algorithms, analyzing
the memory and time required by an execution of the algorithm,
and verifying that the algorithm will produce the correct answer.

Applications and Modeling: It is important to appreciate and
understand the wide range of applications of the topics in
discrete mathematics and develop the ability to develop new
models in various domains. Concepts from discrete mathematics
have not only been used to address problems in computing, but
have been applied to solve problems in many areas such as
chemistry, biology, linguistics, geography, business, etc.
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Discrete Mathematics is a Gateway Course

Topics in discrete mathematics will be important in many
courses that you will take in the future:

e Computer Science: Computer Architecture, Data Structures,
Algorithms, Programming Languages, Compilers, Computer
Security, Databases, Artificial Intelligence, Networking,
Graphics, Game Design, Theory of Computation, ......

e Mathematics: Logic, Set Theory, Probability, Number
Theory, Abstract Algebra, Combinatorics, Graph Theory,
Game Theory, Network Optimization, ...

» The concepts learned will also be helpful in continuous areas of
mathematics.

e Other Disciplines: You may find concepts learned here
useful in courses in philosophy, economics, linguistics, and
other departments.
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Workload

One assignment per chapter (50%)

e Expect to spend 1-3 hours on every assignment
One mid-term exam (20%)

e Chapters 1,2,3,4,5,and 12
One final exam (30%)

e Chapters 6,7,8,9,10, 11,13



Chapter 1, Part I: Propositional Logic

With Question/Answer Animations

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.




Chapter Summary

Propositional Logic
e The Language of Propositions
e Applications
e Logical Equivalences
Predicate Logic
e The Language of Quantifiers
e Logical Equivalences
e Nested Quantifiers
Proofs

e Rules of Inference
e Proof Methods
e Proof Strategy



Propositional Logic Summary

The Language of Propositions
e Connectives
e Truth Values
e Truth Tables
Applications
e Translating English Sentences
e System Specifications
e Logic Puzzles
e Logic Circuits
Logical Equivalences
e Important Equivalences
e Showing Equivalence
e Satisfiability



Section 1.1




Section Summary

Propositions

Connectives

e Negation

e Conjunction

e Disjunction

e Implication; contrapositive, inverse, converse
e Biconditional

Truth Tables



Propositions

A proposition is a declarative sentence that is either true or false.
Examples of propositions:
a) The Moon is made of green cheese.
b) Trenton is the capital of New Jersey.
c) Toronto is the capital of Canada.
&y - T10=1
SRR 02
Examples that are not propositions.
a) Sitdown!
b) What time is it?
o sy i =28 o2 )
d x+y=z

proposition i



Propositional Logic

Constructing Propositions
e Propositional Variables: p, g, 1, s, ...

e The proposition that is always true is denoted by T and
the proposition that is always false is denoted by F.

e Compound Propositions; constructed from logical
connectives and other propositions

e Negation —
e Conjunction A
e Disjunction V

e Implication — Negation
Conjunction & HX
Disjunction ffTHX

Implication ZE

Biconditional X{ 2544

hE

e Biconditional &



Compound Propositions: Negation

* The negation of a proposition p is denoted by —p and

has this truth table:
T F
F T

* Example: If p denotes “The earth is round.”, then —p
denotes “It is not the case that the earth is round,’ or
more simply “The earth is not round.”



Conjunction

* The conjunction of propositions p and ¢ is denoted
by p A g and has this truth table:

p g lprd
T T T
T F F
F T F
F F F

* Example: If p denotes “I am at home.” and g denotes

“It is raining.” then p Ag denotes “I am at home and it
is raining.’



Disjunction

* The disjunction of propositions p and g is denoted
by pVgand has this truth table:

p g _____lpvg______
T T T
T F T
F T T
F F F

* Example: If p denotes “I am at home.” and g denotes
“It is raining.” then pVgdenotes “I am at home or it is
raining.”



The Connective Or in English

In English “or” has two distinct meanings.

“Inclusive Or” - In the sentence “Students who have taken CS202 or
Math120 may take this class,” we assume that students need to have taken
one of the prerequisites, but may have taken both. This is the meaning of
disjunction. For pVvg to be true, either one or both of pand g must be true.

“Exclusive Or” - When reading the sentence “Soup or salad comes with this
entrée,” we do not expect to be able to get both soup and salad. This is the
meaning of Exclusive Or (Xor). In p @ g, one of p and g must be true, but
not both. The truth table for @ is:

p g p®7

T T F
T F T
F T T
F F F Inclusive Or 3ft8{

Exclusive Or F 8k



Implication

* If p and g are propositions, then p =g is a conditional statement or
implication which is read as “if p, then g” and has this truth table:

EE N FEY

™ ™ o R
™ — ™
=~ = ™ -

* Example: If p denotes “I am at home.” and g denotes “It is
raining.” then p—g denotes “If I am at home then it is raining.”

* In p—gq, p is the hypothesis (antecedent or premise) and ¢ is

the conclusion (or consequence). hypothesis ffx %

conclusion 4516 antecedent Hif}
consequence Jaff premise A2
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Understanding Implication

In p —gthere does not need to be any connection
between the antecedent or the consequent. The
“meaning” of p =g depends only on the truth values of

pand gq.
These implications are perfectly fine, but would not be
used in ordinary English.

e “If the moon is made of green cheese, then I have more
money than Bill Gates. ”

e “If the moon is made of green cheese then I'm on
welfare.”

e “If 1 + 1 = 3, then your grandma wears combat boots.”
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Understanding Implication (cont)

One way to view the logical conditional is to think of
an obligation or contract.

e “If I am elected, then I will lower taxes.”
e “If you get 100% on the final, then you will getan A.”

If the politician is elected and does not lower taxes,
then the voters can say that he or she has broken the
campaign pledge. Something similar holds for the
professor. This corresponds to the case where pis true
and ¢ is false.
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Different Ways of Expressing p > @g

if p, then g o pimplies g

if p, g e ponlyif g

q unless —p ° gwhen p

qif p

g whenever p e pissufficient for g

g follows from p ¢ gis necessary for p

a necessary condition for pis g
a sufficient condition for gis p
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Converse, Contrapositive, and Inverse

From p —»g we can form new conditional statements .

° g-p is the converse of p—g

e ng— - p isthe contrapositive of p—-g

e . p— g istheinverseof p—g
Example: Find the converse, inverse, and contrapositive of
“It raining is a sufficient condition for my not going to
town.”
Solution:

converse: If I do not go to town, then it is raining.

inverse: If it is not raining, then I will go to town.

contrapositive: If I go to town, then it is not raining.

converse lﬁ i]§] E_

UL 97|
contraposmve o ER
inverse fi 1§ E)_



Biconditional

* If p and g are propositions, then we can form the biconditional
proposition p < g, read as “p if and only if ¢.” The biconditional
p < g denotes the proposition with this truth table:

p g lpog

S

o o=
™ el T e
= = e

* If p denotes “I am at home.” and g denotes “It is raining.” then
p<q denotes “I am at home if and only if it is raining.”



Expressing the Biconditional

Some alternative ways “p if and only if g~ is expressed
in English:

e pisnecessaryand sufficient for g
e if p then g, and conversely
e piffqg



Tables For Compound

Propositions

Construction of a truth table:

Rows

e Need a row for every possible combination of values for
the atomic propositions.

Columns

e Need a column for the compound proposition (usually
at far right)

e Need a column for the truth value of each expression
that occurs in the compound proposition as it is built
up.

 This includes the atomic propositions
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Example Truth Table

* Construct a truth tablefor pV q— —r

I
I
~
)
<
o]
)
<
o]
l
|
~

m ™ ™ ™ = = = —
m ™ o~ = ™ ™ - -
m =4 m = m = T -
== /" 4 =7 - '™
- =4 4 m 4 =T - ™



Equivalent Propositions

* Two propositions are equivalent if they always have the
same truth value.

* Example: Show using a truth table that the
conditional is equivalent to the contrapositive.

Solution:

p g lop =g pog -go-p
T T

BN RN
e R T
= a1 ™
=4 = 3 =N

F F
T T
T T

equivalent “EHY



"“Using a Truth Table to Show Non-
Equivalence

Example: Show using truth tables that neither the
converse nor inverse of an implication are not
equivalent to the implication.

Solution:
[ C E R T RS
T T F F . - -
T F F - - : !
F T T F " - :
F F T - . - i
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Problem

How many rows are there in a truth table with n
propositional variables?

Solution: 2" We will see how to do this in Chapter 6.

Note that this means that with n propositional
variables, we can construct 2" distinct (i.e., not
equivalent) propositions.



Precedence of Logical Operators

< > B
Ui A W N H

p vqg— —r isequivalentto (p vg) = —r
[f the intended meaning is p v(g = —r)
then parentheses must be used.

precedence L5/t 2
parentheses ff 5
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plications of Propositional Logic:
Summary

Translating English to Propositional Logic
System Specifications

Boolean Searching

Logic Puzzles

Logic Circuits

Al Diagnosis Method (Optional)



Translating English Sentences

Steps to convert an English sentence to a statement in
propositional logic
e Identify atomic propositions and represent using
propositional variables.

e Determine appropriate logical connectives
“If [ go to Harry’s or to the country, [ will not go
shopping.’
e p: I go to Harry’s If p or g then not r.
e g: I go to the country.

Y g)—> T
e r: I will go shopping. (p C])
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Example

Problem: Translate the following sentence into
propositional logic:

“You can access the Internet from campus only if you are
a computer science major or you are not a freshman.”

One Solution: Let a, ¢, and £ represent respectively
« e ) «
You can access the internet from campus,” “You are a
computer science major, and “You are a freshman.”

a— (cV 1)
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System Specifications

System and Software engineers take requirements in
English and express them in a precise specification
language based on logic.
Example: Express in propositional logic:
“The automated reply cannot be sent when the file
system is full”

Solution: One possible solution: Let p denote “The
automated reply can be sent” and g denote “The file
system is full.”

q— = p
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Consistent System Specifications

Definition: A list of propositions is consistent if it is
possible to assign truth values to the proposition variables
so that each proposition is true.

Exercise: Are these specifications consistent?

e “The diagnostic message is stored in the buffer or it is retransmitted.”

e “The diagnostic message is not stored in the buffer.”

o “If the diagnostic message is stored in the buffer, then it is retransmitted.”
Solution: Let p denote “The diagnostic message is stored in the buffer.” Let
q denote “The diagnostic message is retransmitted” The specification can

be writtenas:pV g, =p, p = g. When pis false and q is true all three
statements are true. So the specification is consistent.

e What if “The diagnostic message is not retransmitted is added.”

Solution: Now we are adding —gand there is no satisfying assignment. So
the specification is not consistent.

consistent — 21



Raymond
Smullyan

Logic Puzzles
(Born 1919)

An island has two kinds of inhabitants, knights, who always tell the
truth, and knaves, who always lie.

You go to the island and meet A and B.

e Asays “Bisa knight.”

e B says “The two of us are of opposite types.”
Example: What are the types of A and B?

Solution: Let pand g be the statements that A is a knight and B isa
knight, respectively. So, then —p represents the proposition that A is a
knave and —q that B is a knave.

e If A isa knight, then p is true. Since knights tell the truth, g must also be
true. Then (p A = q)V (= p A g)would have to be true, but it is not. So, A is
not a knight and therefore —p must be true.

e If A isa knave, then B must not be a knight since knaves always lie. So, then
both —p and —q hold since both are knaves.

knaves J¢ i
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gic Circuits
(Studied in depth in Chapter 12)

Electronic circuits; each input/output signal can be viewed asa o or 1.
e o represents False
e 1 represents True

Complicated circuits are constructed from three basic circuits called gates.

Inverter OR gate AND gate

o The inverter (NOT gate)takes an input bit and produces the negation of that bit.

e The OR gate takes two input bits and produces the value equivalent to the disjunction of the two
bits.

e The AND gate takes two input bits and produces the value equivalent to the conjunction of the
two bits.
More complicated digital circuits can be constructed by combining these basic circuits to
produce the desired output given the input signals by building a circuit for each piece of
the output expression and then combining them. For example:
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Section Summary

Tautologies, Contradictions, and Contingencies.
Logical Equivalence
e Important Logical Equivalences
e Showing Logical Equivalence
Normal Forms (optional, covered in exercises in text)
e Disjunctive Normal Form
e Conjunctive Normal Form
Propositional Satisfiability

e Sudoku Example



~Tautologies, Contradictions, and
Contingencies

* A tautology is a proposition which is always true.
e Example: pV-p
* A contradiction is a proposition which is always false.
e Example: p A—p
* A contingency is a proposition which is neither a
tautology nor a contradiction, such as p

T F T F

F T T F
tautology 7K H.1\
contradiction 7 J& 1\,

contingency ] gz
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Logically Equivalent

Two compound propositions p and q are logically equivalent if p<q
is a tautology.

We write this as p&¢g oras p=gwhere pand gare compound
propositions.

Two compound propositions pand g are equivalent if and only if the
columns in a truth table giving their truth values agree.

This truth table shows that = pV g is equivalent to p = ¢q.

-!-__

S

= = ™ ™
- T
= = ™ =

™ T = =
—

T
F
T
F
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De Morgan’s Laws
g — /7

g — P

This truth table shows that De Morgan’s Second Law holds.

-!---

T F F

F F T T F
T T F T F
F T T F T

Augustus De Morgan

1806-1871

—~



Key Logical Equivalences

e Identity Laws(fE%$1#): pAT =p , pVF=p

e Domination Laws(Zfitf#): pvT =T , PA = —1

o [dempotent Laws(F%/E): PVP=p , PAP=D

~{p) =D

N
b
N

e Double Negation Law(X{ B 15 7E#):

e Negation Laws(5E%E): pV-p=1 |, pA-p=F




Key Logical Equivalences (cont)
e Commutative Laws: pVg=qVp, pAgq=qg/Ap

(A e 43t)
e Associative Laws: (p A C]) T =PI (q A T)
(ZE7) (g r=p¥(gyr)

o D1?’f1;1£;2i)ve Laws: (p \/ (C] A r)) == (p V ) ( )
TRCR pA(gVr)) =AYV (PAT)
p

* AbsorptionLaws: pV (pAq)=p pA(pVq) =
(MR L)
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More Logical Equivalences

TABLE 7 Logical Equivalences
Involving Conditional Statements.

TABLE 8 Logical
p—>qg=-pVyg Equivalences Involving
Biconditional Statements.

p—>q=-q—>—p

pVg=-p—>gq peqg=(p—>q) AG—p)
pAg=—(p—>—q) peqg=-po g

(P> 9 =pAr—q peqg=(pAqg)V(—pA-q)

p=>@A(p—>r)=p—>(qAr) ~(pog)=po g

(p—=>r)AN(@—>r)=(pVvgqg)—>r
(p—=>q)V(p—>r)=p—>(@qVr)

(p—>r)Vg—->r)=(pAg) >r




~Constructing New Logical
Equivalences

We can show that two expressions are logically equivalent
by developing a series of logically equivalent statements.

To prove that A = B we produce a series of equivalences
beginning with A and ending with B.
A E Al

A, = B

Keep in mind that whenever a proposition (represented by
a propositional variable) occurs in the equivalences listed
earlier, it may be replaced by an arbitrarily complex
compound proposition.



Equivalence Proofs

Example: Show that =(p V (=p A q))
is logically equivalentto —p A —¢q

Solution:

-(pV(=pAq)) = -pA-(-pAq) by the second De Morgan law
= -pA[=(-p) Vg by the first De Morgan law
= -pA(pV—q) by the double negation law
= (-pAp)V(-pA-q) Dby the second distributive law
= FV(-pA-gq) because -pAp=F
= (—pA—q)VF by the commutative law

for disjunction
(—p A —q) by the identity law for F



Equivalence Proofs

Example: Show that (p A q) — (p V q)
is a tautology.

Solution:

(pAq) — (pVq) —(pAq)V(pVq) by truth table for —
(-pV —q)V(pVq) by the first De Morgan law
(-pVp)V(—qVq) by associative and
commutative laws
laws for disjunction
&8 & by truth tables

T by the domination law



Disjunctive Normal Form (optional)

A propositional formula is in disjunctive normal form
if it consists of a disjunction of (1, ... ,n) disjuncts
where each disjunct consists of a conjunction of (i, ...,

m) atomic formulas or the negation of an atomic
formula.

* Yes (p 75 ﬂq) \/ (ﬁp \/ q)

*No pA(PVY)
Disjunctive Normal Form is important for the circuit
design methods discussed in Chapter 12.

disjunctive Normal Form #TH{7E 3
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Disjunctive Normal Form (optional)

Example: Show that every compound proposition can be
put in disjunctive normal form.

Solution: Construct the truth table for the proposition.
Then an equivalent proposition is the disjunction with n
disjuncts (where n is the number of rows for which the
formula evaluates to T). Each disjunct has m conjuncts
where m is the number of distinct propositional variables.
Each conjunct includes the positive form of the
propositional variable if the variable is assigned T in that
row and the negated form if the variable is assigned F in
that row. This proposition is in disjunctive normal from.



Disjunctive Normal Form (optional)

Example: Find the Disjunctive Normal Form (DNF) of
(pvVg)——r

Solution: This proposition is true when r is false or
when both p and g are false.

(—lp/\—|C])V—|I‘



~Conjunctive Normal Form
(optional)

A compound proposition is in Conjunctive Normal
Form (CNF) if it is a conjunction of disjunctions.

Every proposition can be put in an equivalent CNF.

Conjunctive Normal Form (CNF) can be obtained by
eliminating implications, moving negation inwards
and using the distributive and associative laws.

Important in resolution theorem proving used in
artificial Intelligence (Al).

A compound proposition can be put in conjunctive
normal form through repeated application of the
logical equivalences covered earlier.

Conjunctive Normal Form & H{y5 3
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Conjunctive Normal Form (optional)
Example: Put the following into CNF:
-(p—=q)V(r—p)
Solution:

1. Eliminate implication signs:

(- p¥gl V| rip

>.  Move negation inwards; eliminate double negation:

(BA )V (OFY p)

3. Convert to CNF using associative/distributive laws

(Y o YpIAlLYY TrYp)



