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What is Discrete Mathematics?
� Discrete mathematics is the part of mathematics devoted 

to the study of discrete (as opposed to continuous) objects.
� Calculus deals with continuous objects and is not part of 

discrete mathematics.  
� Examples of discrete objects: integers, steps taken by a 

computer program, distinct paths to travel from point A to 
point B on a map along a road network, ways to pick a 
winning set of numbers in a lottery.

� A course in discrete mathematics provides the 
mathematical background needed for all subsequent 
courses in computer science and for all subsequent courses 
in the many branches of discrete mathematics.



Kinds of Problems Solved Using 
Discrete Mathematics
� How many ways can a  password be chosen following 

specific rules?
� How many valid Internet addresses are there?
� What is the probability of winning a particular lottery?
� Is there a link between two computers in a network?
� How can I identify spam email messages?
� How can I encrypt a message so that no unintended 

recipient can read it?
� How can we build a  circuit that adds two integers?



Kinds of Problems Solved Using 
Discrete Mathematics 
� What is the shortest path between two cities using a 

transportation system?
� Find the shortest tour that visits each of a group of cities 

only once and then ends in the starting city.
� How can we represent English sentences so that a computer 

can reason with them?
� How can we prove that there are infinitely many prime 

numbers?
� How can a list of integers be sorted so that  the integers are 

in increasing order?
� How many steps are required to do such a sorting?
� How can it be proved that a sorting algorithm always 

correctly sorts a list?



Goals of a Course in Discrete 
Mathematics
� Mathematical Reasoning: Ability to read, 

understand, and construct mathematical arguments 
and proofs. 

� Combinatorial Analysis: Techniques for  counting 
objects of different kinds. 

� Discrete Structures: Abstract mathematical 
structures that represent objects and the relationships 
between them. Examples are sets, permutations, 
relations, graphs, trees, and finite state machines.



Goals of a Course in Discrete 
Mathematics 
� Algorithmic Thinking: One way to solve many problems is to 

specify an algorithm. An algorithm is a sequence of steps that 
can be followed to solve any instance of a particular problem. 
Algorithmic thinking involves specifying algorithms, analyzing 
the memory and time required by an execution of the algorithm, 
and verifying that the algorithm will produce the correct answer. 

� Applications and Modeling: It is important to appreciate and 
understand the wide range of applications of the topics in 
discrete mathematics and develop the ability to develop new 
models in various domains. Concepts from discrete mathematics  
have not only been used to address problems in computing, but 
have been applied to solve problems in many areas such as 
chemistry, biology, linguistics, geography, business, etc. 



Discrete Mathematics is a Gateway Course
� Topics in discrete mathematics will be important in many 

courses that you will take in the future:
� Computer Science: Computer Architecture, Data Structures, 

Algorithms, Programming Languages, Compilers, Computer 
Security, Databases, Artificial Intelligence, Networking, 
Graphics, Game Design, Theory of Computation, ……

� Mathematics: Logic, Set Theory, Probability, Number 
Theory, Abstract Algebra, Combinatorics, Graph Theory, 
Game Theory, Network Optimization, …
� The concepts learned will also be helpful in continuous areas of 

mathematics.
� Other Disciplines: You may find concepts learned here 

useful in courses in philosophy, economics, linguistics, and 
other departments.
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Workload
� One assignment per chapter (50%)

� Expect to spend 1-3 hours on every assignment
� One mid-term exam (20%)

� Chapters 1, 2, 3, 4, 5, and 12 
� One final exam (30%)

� Chapters 6, 7, 8, 9, 10, 11, 13



Chapter 1, Part I: Propositional Logic

With Question/Answer Animations
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Chapter Summary
� Propositional Logic

� The Language of Propositions
� Applications
� Logical Equivalences

� Predicate Logic
� The Language of Quantifiers
� Logical Equivalences
� Nested Quantifiers

� Proofs
� Rules of Inference
� Proof Methods
� Proof Strategy



Propositional Logic Summary
� The Language of Propositions

� Connectives
� Truth Values
� Truth Tables

� Applications
� Translating English Sentences
� System Specifications
� Logic Puzzles
� Logic Circuits 

� Logical Equivalences
� Important Equivalences
� Showing Equivalence
� Satisfiability



Section 1.1



Section Summary
� Propositions
� Connectives

� Negation
� Conjunction
� Disjunction
� Implication; contrapositive, inverse, converse
� Biconditional

� Truth Tables



Propositions
� A proposition is a declarative sentence that is either true or false.
� Examples of propositions:

a) The Moon is made of green cheese.
b) Trenton is the capital of New Jersey.
c) Toronto is the capital of Canada.
d) 1 + 0 = 1
e) 0 + 0 = 2

� Examples that are not propositions.
a) Sit down!
b) What time is it?
c) x + 1 = 2
d) x + y = z

proposition 命题



Propositional Logic
� Constructing Propositions

� Propositional Variables: p, q, r, s, …
� The proposition that is always true is denoted by T and 

the proposition that is always false is denoted by F.
� Compound Propositions; constructed from logical 

connectives and other propositions
� Negation ¬
� Conjunction ∧
� Disjunction ∨
� Implication→
� Biconditional ↔

Negation        否定
Conjunction  合取
Disjunction   析取
Implication 蕴含
Biconditional双条件



Compound Propositions: Negation
� The negation of a proposition  p is  denoted by  ¬p and 

has this truth table:

� Example: If p denotes “The earth is round.”, then ¬p
denotes “It is not the case that the earth is round,” or 
more simply “The earth is not round.”  

p ¬p
T F

F T



Conjunction
� The conjunction of propositions  p and  q is denoted 

by p	∧	q		and has this truth table:

� Example:  If p denotes “I am at home.” and q denotes 
“It is raining.” then p	∧q denotes “I am at home and it 
is raining.”

p q p	∧	q	
T T T

T F F

F T F

F F F



Disjunction
� The disjunction of propositions  p and q is denoted 

by  p	∨q and has this truth table:

� Example:  If p denotes “I am at home.” and q denotes 
“It is raining.” then p	∨q denotes “I am at home or it is 
raining.”

p q p	∨q
T T T

T F T

F T T

F F F



The Connective Or in English
� In English “or” has two distinct meanings.

� “Inclusive Or”  - In the sentence “Students who have taken CS202	or 
Math120 may take this class,” we assume that students need to have taken 
one of the prerequisites, but may have taken both. This is the meaning of 
disjunction.	For	p	∨q to	be	true,	either	one	or	both	of	p and	q	must	be	true.

� “Exclusive Or”  - When reading the sentence “Soup or salad comes with this 
entrée,” we do not expect to be able to get both soup and salad. This is the 
meaning of Exclusive Or (Xor). In p⊕	q	,	one of p and q must be true,	but	
not	both.		The	truth	table	for	⊕	is:

p	 q p	⊕q
T T F

T F T

F T T

F F F Inclusive Or   兼或
Exclusive Or 异或



Implication
� If p and q are propositions, then p	→q is a conditional statement or 

implication which is read as “if p, then q ” and has this truth table:

� Example: If p denotes “I am at home.” and q denotes “It is 
raining.” then   p	→q denotes “If I am at home then it is raining.” 

� In p	→q , p is the hypothesis (antecedent or premise) and q is 
the conclusion (or consequence). 

p q p	→q
T T T

T F F

F T T

F F T

hypothesis 假设
antecedent前件
premise 前提

conclusion 结论
consequence后件



Understanding Implication
� In p	→q	there does not need to be any connection 

between the antecedent or the consequent.	The	
“meaning”	of	p	→q	depends only on the truth values of 
p and q. 

� These implications are perfectly fine, but would not be 
used in ordinary English.
� “If the moon is made of green cheese, then I have more 

money than Bill Gates. ”
� “If the moon is made of green cheese then I’m on 

welfare.”
� “If 1 + 1 = 3, then your grandma wears combat boots.”



Understanding Implication (cont)
� One way to view the logical conditional is to think of 

an obligation or contract.
� “If I am elected, then I will lower taxes.”
� “If you get 100% on the final, then you will get an A.”

� If the politician is elected and does not lower taxes, 
then the voters can say that he or she has broken the 
campaign pledge. Something similar holds for the 
professor. This corresponds to the case where p is true 
and q is false. 



Different Ways of Expressing p	→q
if p, then q p implies q
if p, q p only if q
q unless ¬p q when p
q if p																																					
q whenever p p is sufficient for q
q follows from p q is necessary for p

a necessary condition for p is q
a sufficient condition for q is p



Converse, Contrapositive, and Inverse
� From p	→q we can form new conditional statements .

� q	→p is the converse of p	→q
� ¬q	→	¬	p is the contrapositive of p	→q
� ¬	p	→	¬	q is the inverse of p	→q

Example: Find the converse, inverse, and contrapositive of 
“It raining is a sufficient condition for my not going to 
town.”
Solution:
converse: If I do not go to town, then it is  raining.
inverse:  If it is not raining, then I will go to town.
contrapositive: If I go to town, then it is not raining. 

converse逆命题
contrapositive逆否命题
inverse 反命题



Biconditional
� If p and q are propositions, then  we can form the biconditional

proposition p	↔q , read as “p if and only if q .” The  biconditional
p	↔q denotes the proposition with this truth table:

� If p denotes “I am at home.” and q denotes “It is raining.” then       
p	↔q denotes “I am at home if and only if it is raining.”

p q p	↔q
T T T

T F F

F T F

F F T



Expressing the Biconditional
� Some alternative ways “p if and only if q” is expressed 

in English:

� p is necessary and sufficient for q
� if p then q , and conversely
� p iff q



Truth Tables For Compound 
Propositions
� Construction of a truth table:
� Rows

� Need a row for every possible combination of values  for 
the  atomic propositions.

� Columns
� Need a column for the compound proposition (usually 

at far right)
� Need a column for the truth value of each expression 

that occurs in the compound proposition as it is built 
up.
� This includes the atomic propositions 



Example Truth Table
� Construct a truth table for  

p q r ¬r p Ú q p Ú q	→	¬r
T T T F T F

T T F T T T

T F T F T F

T F F T T T

F T T F T F

F T F T T T

F F T F F T

F F F T F T



Equivalent Propositions
� Two propositions are equivalent if they always have the 

same truth value.
� Example: Show using a truth table that the 

conditional is equivalent to the contrapositive.
Solution:

p q ¬	p ¬	q p	→q ¬q	→	¬	p
T T F F T T

T F F T F F

F T T F T T

F F T T T T

equivalent 等价



Using a Truth Table to Show  Non-
Equivalence
Example: Show using truth tables that neither  the 
converse nor inverse of an implication are not 
equivalent to the implication.
Solution:

p q ¬	p ¬	q p	→q ¬	p	→¬	q q	→	p
T T F F T T T

T F F T F T T

F T T F T F F

F F T T T T T



Problem
� How many rows are there in a truth table with n

propositional variables?

Solution:  2n		 We	will	see	how	to	do	this	in	Chapter	6.

� Note that this means that with n propositional 
variables, we can construct 2n				 distinct	(i.e.,	not	
equivalent)	propositions.	



Precedence of Logical Operators
Operator Precedence
¬ 1

Ù
Ú

2
3

®
«

4
5

p		Úq	® ¬r			is equivalent to (p		Úq)® ¬r
If the intended meaning is p		Ú(q	® ¬r	)
then parentheses must be used.

precedence 优先级
parentheses括号
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Applications of Propositional Logic: 
Summary
� Translating English to Propositional Logic
� System Specifications
� Boolean Searching
� Logic Puzzles
� Logic Circuits 
� AI Diagnosis Method (Optional)



Translating English Sentences
� Steps to convert an English sentence to a statement in 

propositional logic
� Identify atomic propositions and represent using 

propositional variables.
� Determine appropriate logical connectives

� “If I go to Harry’s or to the country, I will not go 
shopping.”
� p: I go to Harry’s
� q: I go to the country.
� r:  I will go shopping.

If p or q then not r.



Example
Problem: Translate the following sentence into 
propositional logic:

“You can access the Internet from campus only if you are 
a computer science major or you are not a freshman.”

One Solution: Let a, c, and f represent respectively 
“You can access the internet from campus,” “You are a 
computer science major,” and “You are a freshman.”

a→	(c	∨	¬	f )



System Specifications
� System and Software engineers take requirements in 

English and express them in a precise specification 
language based on logic.
Example: Express in propositional logic:
“The automated reply cannot be sent when the file 
system is full”
Solution: One possible solution: Let p denote “The 
automated reply can be sent” and q denote “The file 
system is full.”

q→	¬	p



Consistent System Specifications
Definition: A list of propositions is consistent if it is 
possible to assign truth values to the proposition variables 
so that each proposition is true.
Exercise: Are these specifications consistent?
� “The diagnostic message is  stored in the buffer or it is retransmitted.”
� “The diagnostic message is not stored in the buffer.”
� “If the diagnostic message is stored in the buffer, then it is retransmitted.”

Solution: Let p denote “The diagnostic message is stored in the buffer.” Let 
q denote “The diagnostic message is retransmitted” The specification can 
be written as: p	∨	q,		¬p, p	→	q.   When p is false and q is true all three 
statements are true. So the specification is consistent.
� What if “The diagnostic message is not retransmitted is added.” 

Solution: Now we are adding ¬q and there is no satisfying    assignment. So 
the specification is not consistent. 

consistent 一致的



Logic Puzzles
� An island has two kinds of inhabitants, knights, who always tell the 

truth, and knaves, who always lie. 
� You go to the island and meet A and B. 

� A says “B is a knight.”
� B says “The two of us are of opposite types.”

Example: What are the types of A and B?
Solution: Let p and q be the statements that A is a knight and B is a 
knight, respectively. So, then ¬p represents the proposition that A is a 
knave and ¬q that B is a knave.
� If A is a knight, then p is  true. Since knights tell the truth, q must also be 

true. Then (p	∧ ¬ q)∨	(¬ p	∧ q)	would have to be true, but it is not. So, A is 
not a knight and therefore ¬p must be true.

� If A is a knave, then B must not be a knight since knaves always lie. So, then 
both ¬p and ¬q hold since both are knaves.

Raymond 
Smullyan
(Born 1919)

knaves无赖



Logic Circuits 
(Studied in depth in Chapter 12)
� Electronic circuits; each input/output signal  can be viewed as a 0 or 1. 

� 0    represents False
� 1    represents True

� Complicated circuits are constructed from three basic circuits called gates.

� The inverter  (NOT gate)takes an input bit and produces the negation of that bit.
� The OR gate takes two input bits and produces the value equivalent to the disjunction of the two 

bits.
� The AND gate takes two input bits and produces the value equivalent to the conjunction of the 

two bits.

� More complicated digital circuits can be constructed by combining these basic circuits  to 
produce the desired output given the input signals by building a circuit for each piece of 
the output expression and then combining them. For example:
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Section Summary
� Tautologies, Contradictions, and Contingencies. 
� Logical Equivalence

� Important Logical Equivalences

� Showing Logical Equivalence

� Normal Forms (optional, covered in exercises in text)
� Disjunctive Normal Form

� Conjunctive Normal Form

� Propositional Satisfiability
� Sudoku Example



Tautologies, Contradictions, and 
Contingencies
� A  tautology is a proposition which is always true.

� Example: p ∨¬p
� A  contradiction is a proposition which is always false.

� Example: p ∧¬p
� A  contingency is a proposition which is neither a 

tautology nor a contradiction, such as  p

P ¬p p ∨¬p p ∧¬p
T F T F

F T T F
tautology 永真式
contradiction矛盾式
contingency可能式



Logically Equivalent
� Two compound propositions p and q are logically equivalent if  p↔q

is a tautology.
� We write this as p⇔q or as p≡q where p and q are compound 

propositions.
� Two compound propositions p and q are equivalent if and only if the 

columns in a truth table giving their truth values agree.
� This truth table shows that ¬p	∨	q		is equivalent to p	→	q.

p q ¬p ¬p	∨	q p→	q
T T F T T

T F F F F

F T T T T

F F T T T



De Morgan’s Laws

p q ¬p ¬q (p∨q) ¬(p∨q) ¬p∧¬q
T T F F T F F

T F F T T F F

F T T F T F F

F F T T F T T

This truth table shows that De Morgan’s Second Law holds.

Augustus De Morgan

1806-1871



Key Logical Equivalences
� Identity Laws(恒等律):                            ,

� Domination Laws(支配律):                           ,

� Idempotent Laws(幂等律):                            ,  

� Double Negation Law(双重否定律):

� Negation Laws(否定律):                              ,



Key Logical Equivalences (cont)
� Commutative Laws:                              ,

� Associative Laws:

� Distributive Laws:

� Absorption Laws:

(交换律)

(结合律)

(分配律)

(吸收律)



More Logical Equivalences



Constructing New Logical 
Equivalences
� We can show that two expressions are logically equivalent 

by developing a series of logically equivalent statements.
� To prove that                 we produce a series of equivalences 

beginning with A and ending with B.

� Keep in mind that whenever a proposition (represented by 
a propositional variable) occurs in the equivalences listed 
earlier, it may be replaced by an arbitrarily complex 
compound proposition.



Equivalence Proofs
Example: Show that                               

is logically equivalent to 
Solution:



Equivalence Proofs
Example: Show that                               

is a tautology. 
Solution:



Disjunctive Normal Form (optional)
� A propositional formula is in disjunctive normal form 

if it consists of a disjunction  of (1, … ,n) disjuncts
where each disjunct consists of a conjunction of (1, …, 
m) atomic formulas or the negation of an atomic 
formula.
� Yes

� No
� Disjunctive Normal Form is important for the circuit 

design methods discussed in Chapter 12.

disjunctive Normal Form 析取范式



Disjunctive Normal Form (optional)
Example: Show that every compound proposition can be 
put in disjunctive normal form. 
Solution: Construct the truth table for the proposition. 
Then an equivalent proposition is the disjunction with n
disjuncts (where n is the number of rows for which the 
formula evaluates to T). Each disjunct has m conjuncts 
where m is the number of distinct propositional variables. 
Each conjunct includes the positive form of the 
propositional variable if the variable is assigned T in that 
row and the negated form if the variable is assigned F in 
that row.  This proposition is in disjunctive normal from.



Disjunctive Normal Form (optional)
Example: Find the Disjunctive Normal Form (DNF) of 

(p∨q)→¬r

Solution: This proposition is true when r is false or 
when both p and q are false.

(¬	p∧	¬	q)	∨	¬r



Conjunctive Normal Form 
(optional)
� A compound proposition is in Conjunctive Normal 

Form (CNF) if it is a conjunction of disjunctions.
� Every proposition can be put in an equivalent CNF.
� Conjunctive Normal Form (CNF) can be obtained by 

eliminating implications, moving negation inwards 
and using the distributive  and associative laws.

� Important in resolution theorem proving used in 
artificial Intelligence (AI).

� A  compound proposition can be put in conjunctive 
normal form through repeated application of the 
logical equivalences covered earlier.

Conjunctive Normal Form 合取范式



Conjunctive Normal Form (optional)
Example:    Put the following into CNF: 

Solution:
1. Eliminate implication signs:

2. Move negation inwards; eliminate double negation:

3. Convert to CNF using associative/distributive laws


