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Recap: Propositional Logic 
Summary
� The Language of Propositions

� Connectives
� Truth Values
� Truth Tables

� Applications
� Translating English Sentences
� System Specifications
� Logic Puzzles
� Logic Circuits 

� Logical Equivalences
� Important Equivalences
� Showing Equivalence
� Satisfiability



Key Logical Equivalences
� Identity Laws(恒等律):                            ,

� Domination Laws(支配律):                           ,

� Idempotent Laws(幂等律):                            ,  

� Double Negation Law(双重否定律):

� Negation Laws(否定律):                              ,



Key Logical Equivalences (cont)
� Commutative Laws:                              ,

� Associative Laws:

� Distributive Laws:

� Absorption Laws:

(交换律)

(结合律)

(分配律)

(吸收律)



Disjunctive Normal Form (optional)
� A propositional formula is in disjunctive normal form 

if it consists of a disjunction  of (1, … ,n) disjuncts
where each disjunct consists of a conjunction of (1, …, 
m) atomic formulas or the negation of an atomic 
formula.
� Yes

� No
� Disjunctive Normal Form is important for the circuit 

design methods discussed in Chapter 12.

disjunctive Normal Form 析取范式



Disjunctive Normal Form (optional)
Example: Show that every compound proposition can be 
put in disjunctive normal form. 
Solution: Construct the truth table for the proposition. 
Then an equivalent proposition is the disjunction with n
disjuncts (where n is the number of rows for which the 
formula evaluates to T). Each disjunct has m conjuncts 
where m is the number of distinct propositional variables. 
Each conjunct includes the positive form of the 
propositional variable if the variable is assigned T in that 
row and the negated form if the variable is assigned F in 
that row.  This proposition is in disjunctive normal from.



Disjunctive Normal Form (optional)
Example: Find the Disjunctive Normal Form (DNF) of 

(p∨q)→¬r

Solution: This proposition is true when r is false or 
when both p and q are false.

(¬	p∧	¬	q)	∨	¬r



More Logical Equivalences



Conjunctive Normal Form 
(optional)
� A compound proposition is in Conjunctive Normal 

Form (CNF) if it is a conjunction of disjunctions.
� Every proposition can be put in an equivalent CNF.
� Conjunctive Normal Form (CNF) can be obtained by 

eliminating implications, moving negation inwards 
and using the distributive  and associative laws.

� Important in resolution theorem proving used in 
artificial Intelligence (AI).

� A  compound proposition can be put in conjunctive 
normal form through repeated application of the 
logical equivalences covered earlier.

Conjunctive Normal Form 合取范式



Conjunctive Normal Form (optional)
Example:    Put the following into CNF: 

Solution:
1. Eliminate implication signs:

2. Move negation inwards; eliminate double negation:

3. Convert to CNF using associative/distributive laws



Propositional Satisfiability
� A compound proposition is satisfiable if there is an 

assignment of truth values to its variables that make it 
true. When no such assignments exist, the compound 
proposition is unsatisfiable.

� A compound proposition is unsatisfiable if and only if 
its negation is a tautology.

satisfiable 可满足的
unsatisfiable不可满足的



Questions on Propositional 
Satisfiability

Example: Determine the satisfiability of the following 
compound propositions:

Solution: Satisfiable. Assign T to p,	q,	and r.

Solution: Satisfiable. Assign T to p	and F	 to q.

Solution:  Not satisfiable. Check each possible assignment 
of truth values to the propositional variables and none will 
make the proposition true.



Notation

Needed for the next example.



Sudoku
� A Sudoku puzzle is represented by a 9´9 grid made 

up of nine 3´3 subgrids, known as blocks. Some of the 
81 cells of the puzzle are assigned one of the numbers 
1,2, …, 9.

� The puzzle is solved by assigning numbers to each 
blank cell so that every row, column and block 
contains each of the nine possible numbers.

� Example



Encoding as a Satisfiability Problem
� Let p(i,j,n) denote the proposition that is true when 

the number n is in the cell in the ith row and the jth
column.

� There are 9´9 ´ 9	= 729 such propositions.
� In the sample puzzle p(5,1,6) is true, but p(5,j,6) is 

false for j = 2,3,…9



Encoding (cont)
� For each cell with a given value, assert p(i,j,n), when 

the cell in row i and column j has the given value.
� Assert that every row contains every number.

� Assert that every column contains every number.



Encoding (cont)
� Assert that each of the 3 x 3 blocks contain every 

number.

(this is tricky - ideas from chapter 4 help)
� Assert that no cell contains more than one  number. 

Take the conjunction over all values of n, n’, i, and j, 
where each variable ranges from 1 to 9 and             ,
of



Solving Satisfiability Problems
� To solve a  Sudoku puzzle, we need to find an assignment 

of truth values to the 729 variables of the form  p(i,j,n) that 
makes the conjunction of the assertions true. Those 
variables that are assigned T yield a solution to the puzzle.

� A truth table can always be used to determine the 
satisfiability of a compound proposition. But this is too 
complex even for modern computers for large problems. 

� There has been much work on developing efficient 
methods for solving satisfiability problems as many 
practical problems can be translated into satisfiability
problems. 



Summary
� Predicate Logic (First-Order Logic (FOL), Predicate 

Calculus)
� The Language of Quantifiers
� Logical Equivalences
� Nested Quantifiers
� Translation from Predicate Logic to English
� Translation from English to Predicate Logic

Predicate Logic      谓词逻辑
First-Order Logic 一阶逻辑
Predicate Calculus谓词演算



Section 1.4



Section Summary
� Predicates 
� Variables
� Quantifiers

� Universal Quantifier
� Existential Quantifier

� Negating Quantifiers
� De Morgan’s Laws for Quantifiers

� Translating English to Logic
� Logic Programming (optional)



Propositional Logic Not Enough
� If we have: 

“All men are mortal.”
“Socrates is a man.”

� Does it follow that “Socrates is mortal?”
� Can’t  be represented in propositional logic. Need a 

language that talks about objects, their properties, and 
their relations. 

� Later we’ll see how to draw inferences. 



Introducing Predicate Logic
� Predicate logic uses the following new features:

� Variables:   x, y, z
� Predicates: P(x), M(x)
� Quantifiers (to be covered in a few slides):

� Propositional functions are a generalization of 
propositions. 
� They contain variables and a predicate, e.g., P(x)
� Variables can be replaced by elements from their 

domain.
Quantifiers      量词
Propositional functions   命题函数
domain 域



Propositional Functions
� Propositional functions become propositions (and have 

truth values) when their variables are each replaced by a 
value from the domain (or  bound by a quantifier, as we will 
see later).

� The statement P(x) is said to be the value of the 
propositional function P at x. 

� For example, let P(x) denote  “x > 0” and the domain be the 
integers. Then:
P(-3)   is false.
P(0)   is false.
P(3)  is true. 

� Often the domain is denoted by U. So in this example U is 
the integers.



Examples of Propositional 
Functions
� Let “x + y = z” be denoted by  R(x, y, z) and U (for all three variables) be 

the integers. Find these truth values:
R(2,-1,5)

Solution:  F
R(3,4,7)

Solution: T
R(x, 3, z)

Solution: Not a Proposition
� Now let  “x - y = z” be denoted by Q(x, y, z), with U as the integers.

Find these truth values:
Q(2,-1,3)

Solution:  T
Q(3,4,7)

Solution: F
Q(x, 3, z)

Solution:  Not a Proposition



Compound Expressions
� Connectives from propositional logic carry over to predicate 

logic. 
� If P(x) denotes  “x > 0,” find these truth values:

P(3) ∨	P(-1)						Solution:	T
P(3) ∧	P(-1)						Solution:	F
P(3) →	P(-1)					Solution:	F
P(3) →	¬P(-1)					Solution:	T

� Expressions with variables are not propositions and therefore do 
not have truth values.  For example,
P(3) ∧	P(y)						
P(x) →	P(y)					

� When used with quantifiers (to be introduced next), these 
expressions (propositional functions) become propositions.



Quantifiers
� We need quantifiers to express the meaning of English 

words including all and some:
� “All men are Mortal.”
� “Some cats do not have fur.”

� The two most important quantifiers are:
� Universal Quantifier, “For all,”   symbol: "
� Existential Quantifier, “There exists,”  symbol: $

� We write  as in "x P(x) and $x P(x).
� "x P(x) asserts P(x) is true for every x in the domain.
� $x P(x) asserts P(x) is true for some x in the domain.
� The quantifiers are said to bind the variable x in these 

expressions. 

Charles Peirce (1839-1914)

Universal Quantifier 全称量词
Existential Quantifier    存在量词



Universal Quantifier
� "x P(x) is read as “For all x, P(x)” or “For every x, P(x)”

Examples:
1) If P(x) denotes  “x > 0”	and	U is	the	integers,	then	"x P(x) is 

false.
2) If P(x) denotes  “x > 0”	and	U is	the	positive	integers,	then					

"x P(x) is true.
3) If P(x) denotes  “x is even”	and	U is	the	integers,		then	" x 

P(x) is false.



Existential Quantifier
� $x P(x) is read as “For some x, P(x)”,  or as “There is an 

x such that P(x),”  or “For at least one x, P(x).” 
Examples:

1. If P(x) denotes  “x > 0”	and	U is	the	integers,	then	$x P(x) is 
true. It is also true if U is the positive integers.

2. If P(x) denotes  “x < 0”	and	U is	the	positive	integers,		then					
$x P(x) is false.

3. If P(x) denotes  “x is even”	and	U is	the	integers,		then					$x 
P(x) is true.



Thinking about Quantifiers
� When the  domain of discourse is finite, we can think of 

quantification as looping through the elements of the domain.
� To evaluate "x P(x) loop through all x in the domain. 

� If at every step P(x) is true, then "x P(x) is true. 
� If at a step P(x) is false, then "x P(x) is false and the loop 

terminates. 
� To evaluate $x P(x) loop through all x in the domain. 

� If  at some step, P(x) is true, then $x P(x) is true and the loop 
terminates. 

� If the loop ends without finding an x for which P(x) is true, then $x 
P(x) is false.

� Even if the domains are infinite, we can still think of the 
quantifiers this fashion, but the loops will not terminate in some 
cases.



Properties of Quantifiers
� The truth value of $x	P(x) and " x	P(x)		depend	on	both	
the	propositional	function	P(x)	and	on		the	domain	U.	

� Examples:
1. If U is the  positive integers and P(x) is the statement           

“x < 2”, then $x	P(x) is true, but " x	P(x)		is	false.	
2. If U is the negative integers and P(x) is the statement           

“x < 2”, then both $x	P(x) and  " x	P(x)		are	true.	
3. If U consists of 3, 4, and 5,  and P(x) is the statement           

“x > 2”, then  both $x	P(x) and " x	P(x)		are	true.	But	if	
P(x) is the statement “x < 2”, then  both $x	P(x) and             
" x	P(x)		are	false.	



Precedence of Quantifiers
� The quantifiers " and  $ have higher precedence than 

all the logical operators.
� For example, "x	P(x)	∨ Q(x)		means ("x	P(x))∨ Q(x)
� "x	(P(x)	∨ Q(x))	means	something	different.
� Unfortunately,	often	people	write	"x	P(x)	∨ Q(x)		when	
they	mean	" x	(P(x)	∨ Q(x)).	



Translating from English to Logic
Example 1:  Translate the following sentence into predicate 

logic: “Every student in this class has taken a course in 
Java.”

Solution:
First decide on the domain U. 

Solution 1: If U is all students in this class, define a 
propositional function J(x) denoting “x has taken a course in 
Java” and translate as "x	J(x).	

Solution 2: But if U is all people, also define a propositional  
function S(x) denoting “x is a student in this class” and 
translate as     "x	(S(x)→ J(x)).

"x	(S(x)	∧ J(x)) is	not	correct.		What	does	it	mean?



Translating from English to Logic
Example 2: Translate the following sentence into 

predicate logic: “Some student in this class has taken a 
course in Java.” 

Solution:
First decide on the domain U. 

Solution 1: If U is all students in this class, translate as 
$x	J(x)

Solution 2: But if U is all people, then translate as                 
$x	(S(x)	∧	J(x))	

$x	(S(x)→ J(x)) is	not	correct.	What	does	it	mean?



Returning to the Socrates Example 
� Introduce the  propositional functions Man(x) 

denoting “x is a man” and  Mortal(x) denoting “x is 
mortal.”  Specify the  domain as all people.

� The two premises are:

� The conclusion is:

� Later we will show how to prove that the conclusion 
follows from the premises.



Equivalences in Predicate Logic
� Statements involving predicates and quantifiers are 

logically equivalent if and only if they have the same 
truth value 
� for every predicate substituted into these statements 

and 
� for every domain of discourse used for the variables in 

the expressions. 
� The notation S ≡T indicates	that	S and	T are	logically	
equivalent.	

� Example:		"x ¬¬S(x)	≡"x	S(x)



Thinking about Quantifiers as 
Conjunctions and Disjunctions
� If the domain is finite, a universally quantified proposition is 

equivalent to a conjunction of propositions without quantifiers 
and an existentially quantified proposition is equivalent to  a 
disjunction of propositions without quantifiers. 

� If U consists of the integers 1,2, and 3:

� Even if the domains are infinite, you can still think of the 
quantifiers in this fashion, but the equivalent expressions 
without quantifiers will be infinitely long.



Negating Quantified Expressions
� Consider "x	J(x)

“Every student in your class has taken a course in Java.”
Here J(x) is “x has taken a course in Java” and 
the domain is students in your class. 

� Negating the original statement gives “It is not the case 
that every student in your class has taken Java.” This 
implies that “There is a student in your class who has 
not taken Java.”
Symbolically ¬"x	J(x)		and	$x	¬J(x)	are	equivalent



Negating Quantified Expressions 
(continued)
� Now Consider $ x	J(x)

“There is a student in this class who has taken a course in 
Java.”

Where J(x) is “x has taken a course in Java.”
� Negating the original statement gives “It is not the case 

that there is a student in this class who has taken Java.” 
This implies that “Every student in this class has not 
taken Java”
Symbolically ¬$ x	J(x)		and	" x	¬J(x)	are	equivalent



De Morgan’s Laws for Quantifiers
� The rules for negating quantifiers are:

� The reasoning in the table shows that:

� These are important. You will use these. 



Translation from English to Logic
Examples:
1. “Some student in this class has visited Mexico.”

Solution: Let M(x) denote “x has visited Mexico” and 
S(x) denote “x is a student in this class,”  and U		be	all	
people.

$x		(S(x)	∧	M(x))
2. “Every student in this class has visited Canada or 

Mexico.”
Solution: Add C(x) denoting “x has visited Canada.”

"x	(S(x)→	(M(x)∨C(x)))



Some Fun with Translating from 
English into Logical Expressions
� U = {fleegles, snurds, thingamabobs}

F(x): x is a fleegle
S(x): x is a snurd
T(x): x is a thingamabob

Translate “Everything is a fleegle”

Solution: "x	F(x)



Translation (cont)
� U = {fleegles, snurds, thingamabobs}

F(x): x is a fleegle
S(x): x is a snurd
T(x): x is a thingamabob

“Nothing is a snurd.”

Solution: ¬$x	S(x)			What	is	this	equivalent	to?
Solution:   "x	¬	S(x)	



Translation (cont)
� U = {fleegles, snurds, thingamabobs}

F(x): x is a fleegle
S(x): x is a snurd
T(x): x is a thingamabob

“All fleegles are snurds.”

Solution: "x	(F(x)→	S(x))



Translation (cont)
� U = {fleegles, snurds, thingamabobs}

F(x): x is a fleegle
S(x): x is a snurd
T(x): x is a thingamabob

“Some fleegles are thingamabobs.”

Solution: $x	(F(x)	∧	T(x))



Translation (cont)
� U = {fleegles, snurds, thingamabobs}

F(x): x is a fleegle
S(x): x is a snurd
T(x): x is a thingamabob

“No snurd is a thingamabob.”

Solution: ¬$x	(S(x)	∧	T(x))		What	is	this	equivalent	
to?
Solution: "x	(¬S(x)	∨	¬T(x))



Translation (cont)
� U = {fleegles, snurds, thingamabobs}

F(x): x is a fleegle
S(x): x is a snurd
T(x): x is a thingamabob

“If any fleegle is a snurd then it is also a thingamabob.”

Solution: "x	((F(x)	∧ S(x))→	T(x))



System Specification Example
� Predicate logic is used for specifying properties that systems must 

satisfy.
� For example, translate into predicate logic:

� “Every mail message larger than one megabyte will be compressed.”
� “If a user is active, at least one network link will be available.”

� Decide on predicates and domains (left implicit here) for the variables:
� Let L(m, y) be “Mail message m is larger than y megabytes.”
� Let C(m) denote “Mail message m will be compressed.”
� Let A(u) represent “User u is active.”
� Let S(n, x) represent “Network link n is state x.

� Now we have:

System Specification 系统规范



Lewis Carroll Example
� The first two are called premises and the third is called the 

conclusion. 
1. “All lions are fierce.”
2. “Some lions do not drink coffee.”
3. “Some fierce creatures do not drink coffee.” 

� Here is one way to translate these statements to predicate logic. 
Let P(x), Q(x), and R(x) be the propositional functions “x is a 
lion,” “x is fierce,” and “x drinks coffee,” respectively.
1. "x	(P(x)→	Q(x))
2. $x	(P(x)	∧	¬R(x))
3. $x	(Q(x)	∧	¬R(x))

� Later we will see how to prove that the conclusion follows from 
the premises.

Charles Lutwidge Dodgson
(AKA Lewis Caroll)

(1832-1898)



Some Predicate Calculus 
Definitions (optional)
� An assertion involving predicates and quantifiers is valid if 

it is true 
� for all domains 
� every propositional function  substituted for the predicates in the 

assertion.
Example:  

� An assertion involving predicates is satisfiable if it is true 
� for some domains 
� some propositional functions that can be substituted for  the 

predicates in the assertion. 
Otherwise it is unsatisfiable.
Example: not valid but satisfiable
Example:                                        unsatisfiable

valid 有效的
satisfiable可满足的
unsatisfiable不可满足的



More Predicate Calculus 
Definitions (optional)
� The scope of a quantifier is the part of an assertion in 

which variables are bound by the quantifier.
Example:                                      x has wide scope

Example:                                      x has narrow scope



Section 1.4



Section Summary
� Nested Quantifiers 
� Order of Quantifiers
� Translating from Nested Quantifiers into English
� Translating Mathematical Statements into Statements 

involving Nested Quantifiers.
� Translated English Sentences into Logical Expressions.
� Negating Nested Quantifiers.



Nested Quantifiers
� Nested quantifiers are often necessary to express the 

meaning of sentences in English as well as important 
concepts in computer science and mathematics. 
Example: “Every real number has an inverse” is   
"x	$y(x	+	y	=	0)	
where	the	domains	of	x	and	y	are	the	real	numbers.

� We can also think of nested propositional functions:
"x	$y(x	+	y	=	0)	can be viewed as "x	Q(x)	where Q(x)	is           
$y	P(x,	y)	where P(x,	y)	is (x	+	y	=	0)	



Thinking of Nested Quantification
� Nested Loops

� To see if "x"yP (x,y)	is	true,	loop	through	the	values	of	x	:
� At	each	step,	loop	through	the	values	for	y.	
� If for some pair of x	andy,	P(x,y)	is false, then "x	"yP(x,y)	is false and both the 

outer and inner loop terminate.
"x	"y	P(x,y)	is true if	the	outer	loop	ends	after	stepping	through	each	x.		

� To see if "x	$yP(x,y)	is	true,	loop	through	the	values	of	x:
� At	each	step,	loop	through	the	values	for	y.
� The	inner	loop	ends	when	a	pair	x and	y is	found	such	that	P(x,	y)	is	true.
� If	no	y	 is	found	such	that	P(x,	y)	is	true	the	outer	loop	terminates	as	"x	$yP(x,y)

has been shown to be false. 
"x	$y	P(x,y)		is true if	the	outer	loop	ends	after	stepping	through	each	x.	

� If the domains of the variables are infinite, then this process can not 
actually be carried out.



Order of Quantifiers
Examples:
1. Let P(x,y)	be the statement “x	+	y	=	y	+	x.” Assume 

that U is the real numbers. Then "x	"yP(x,y)		and     
"y	"xP(x,y)	have the same truth value.

2. Let Q(x,y)	be the statement “x	+	y	=	0.” Assume that 
U is the real numbers. Then "x	$yQ(x,y)		is true, but
$y "xQ(x,y)	is false.



Questions on Order of Quantifiers 
Example 1: Let U be the real numbers,
Define P(x,y) : x · y = 0
What is the truth value of the following:
1. "x"yP(x,y)

Answer: False
2. "x$yP(x,y)

Answer: True
3. $x"y P(x,y)

Answer: True
4. $x	$ y	P(x,y)

Answer: True



Questions on Order of Quantifiers
Example 2: Let U be the real numbers,
Define P(x,y) : x / y = 1
What is the truth value of the following:
1. "x"yP(x,y)

Answer: False
2. "x$yP(x,y)

Answer: False
3. $x"y P(x,y)

Answer: False
4. $x	$ y	P(x,y)

Answer: True



Quantifications of Two Variables

Statement When True? When False

P(x,y) is true for every 
pair x,y.

There is a pair x, y for
which P(x,y) is false.

For every x there is a y for 
which P(x,y) is true.

There is an x such that 
P(x,y) is false for every y.

There is an x for which 
P(x,y) is true for every y.

For every x there is a y for 
which P(x,y) is false.

There is a pair x, y for 
which P(x,y) is true.

P(x,y) is false for every 
pair x,y



Translating Nested Quantifiers into 
English
Example 1: Translate the statement 

"x		(C(x	)∨ $y	(C(y	)	∧	F(x,	y)))
where C(x) is “x has a computer,” and F(x,y) is “x and y are 

friends,” and the domain for both x and y consists of all 
students in your school. 
Solution: Every student in your school has a computer or 
has a friend who has a computer. 

Example 2:  Translate the statement
$x"y"z	((F(x,	y)∧	F(x,z)	∧	(y	≠z))→¬F(y,z))

Solution: There is a student none of whose friends are 
also friends with each other.



Translating Mathematical 
Statements into Predicate Logic 

Example : Translate “The sum of two positive integers is 
always positive” into a logical expression.

Solution:
1. Rewrite the statement to make the implied quantifiers and 

domains explicit:
“For every two integers, if these integers are both positive, then the 

sum of these integers is positive.”
2. Introduce the variables x and y, and specify the domain, to 

obtain:
“For all positive integers x and y, x + y is positive.”

3. The result is:
"x " y	((x>	0)∧	(y >	0)→	(x+	y >	0))

where	the	domain	of	both	variables	consists	of	all	integers



Translating English into Logical 
Expressions Example
Example: Use quantifiers to express the statement 

“There is a woman who has taken a flight on every 
airline in the world.”

Solution:
1. Let P(w,f) be “w has taken f		” and Q(f,a) be “f is a 

flight on a .” 
2. The domain of w is all women, the domain of f is all 

flights, and the domain of a is all airlines.
3. Then the statement can be expressed as:

$w "a $f (P(w,f )	∧	Q(f,a))


