
Chapter 1, Part II: Predicate Logic

With Question/Answer Animations

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Recap: Propositional Logic
Summary
� The Language of Propositions

� Connectives
� Truth Values
� Truth Tables

� Applications
� Translating English Sentences
� System Specifications
� Logic Puzzles
� Logic Circuits

� Logical Equivalences
� Important Equivalences
� Showing Equivalence
� Satisfiability

Key Logical Equivalences
� Identity Laws(恒等律): ,

� Domination Laws(支配律): ,

� Idempotent Laws(幂等律): ,

� Double Negation Law(双重否定律):

� Negation Laws(否定律): ,

Key Logical Equivalences (cont)
� Commutative Laws: ,

� Associative Laws:

� Distributive Laws:

� Absorption Laws:

(交换律)

(结合律)

(分配律)

(吸收律)

Disjunctive Normal Form (optional)
� A propositional formula is in disjunctive normal form

if it consists of a disjunction of (1, … ,n) disjuncts
where each disjunct consists of a conjunction of (1, …,
m) atomic formulas or the negation of an atomic
formula.
� Yes

� No
� Disjunctive Normal Form is important for the circuit

design methods discussed in Chapter 12.

disjunctive Normal Form 析取范式

Disjunctive Normal Form (optional)
Example: Show that every compound proposition can be
put in disjunctive normal form.
Solution: Construct the truth table for the proposition.
Then an equivalent proposition is the disjunction with n
disjuncts (where n is the number of rows for which the
formula evaluates to T). Each disjunct has m conjuncts
where m is the number of distinct propositional variables.
Each conjunct includes the positive form of the
propositional variable if the variable is assigned T in that
row and the negated form if the variable is assigned F in
that row. This proposition is in disjunctive normal from.

Disjunctive Normal Form (optional)
Example: Find the Disjunctive Normal Form (DNF) of

(p∨q)→¬r

Solution: This proposition is true when r is false or
when both p and q are false.

(¬	p∧	¬	q)	∨	¬r

More Logical Equivalences

Conjunctive Normal Form
(optional)
� A compound proposition is in Conjunctive Normal

Form (CNF) if it is a conjunction of disjunctions.
� Every proposition can be put in an equivalent CNF.
� Conjunctive Normal Form (CNF) can be obtained by

eliminating implications, moving negation inwards
and using the distributive and associative laws.

� Important in resolution theorem proving used in
artificial Intelligence (AI).

� A compound proposition can be put in conjunctive
normal form through repeated application of the
logical equivalences covered earlier.

Conjunctive Normal Form 合取范式

Conjunctive Normal Form (optional)
Example: Put the following into CNF:

Solution:
1. Eliminate implication signs:

2. Move negation inwards; eliminate double negation:

3. Convert to CNF using associative/distributive laws

Propositional Satisfiability
� A compound proposition is satisfiable if there is an

assignment of truth values to its variables that make it
true. When no such assignments exist, the compound
proposition is unsatisfiable.

� A compound proposition is unsatisfiable if and only if
its negation is a tautology.

satisfiable 可满足的
unsatisfiable不可满足的

Questions on Propositional
Satisfiability

Example: Determine the satisfiability of the following
compound propositions:

Solution: Satisfiable. Assign T to p,	q,	and r.

Solution: Satisfiable. Assign T to p	and F	 to q.

Solution: Not satisfiable. Check each possible assignment
of truth values to the propositional variables and none will
make the proposition true.

Notation

Needed for the next example.

Sudoku
� A Sudoku puzzle is represented by a 9´9 grid made

up of nine 3´3 subgrids, known as blocks. Some of the
81 cells of the puzzle are assigned one of the numbers
1,2, …, 9.

� The puzzle is solved by assigning numbers to each
blank cell so that every row, column and block
contains each of the nine possible numbers.

� Example

Encoding as a Satisfiability Problem
� Let p(i,j,n) denote the proposition that is true when

the number n is in the cell in the ith row and the jth
column.

� There are 9´9 ´ 9	= 729 such propositions.
� In the sample puzzle p(5,1,6) is true, but p(5,j,6) is

false for j = 2,3,…9

Encoding (cont)
� For each cell with a given value, assert p(i,j,n), when

the cell in row i and column j has the given value.
� Assert that every row contains every number.

� Assert that every column contains every number.

Encoding (cont)
� Assert that each of the 3 x 3 blocks contain every

number.

(this is tricky - ideas from chapter 4 help)
� Assert that no cell contains more than one number.

Take the conjunction over all values of n, n’, i, and j,
where each variable ranges from 1 to 9 and ,
of

Solving Satisfiability Problems
� To solve a Sudoku puzzle, we need to find an assignment

of truth values to the 729 variables of the form p(i,j,n) that
makes the conjunction of the assertions true. Those
variables that are assigned T yield a solution to the puzzle.

� A truth table can always be used to determine the
satisfiability of a compound proposition. But this is too
complex even for modern computers for large problems.

� There has been much work on developing efficient
methods for solving satisfiability problems as many
practical problems can be translated into satisfiability
problems.

Summary
� Predicate Logic (First-Order Logic (FOL), Predicate

Calculus)
� The Language of Quantifiers
� Logical Equivalences
� Nested Quantifiers
� Translation from Predicate Logic to English
� Translation from English to Predicate Logic

Predicate Logic 谓词逻辑
First-Order Logic 一阶逻辑
Predicate Calculus谓词演算

Section 1.4

Section Summary
� Predicates
� Variables
� Quantifiers

� Universal Quantifier
� Existential Quantifier

� Negating Quantifiers
� De Morgan’s Laws for Quantifiers

� Translating English to Logic
� Logic Programming (optional)

Propositional Logic Not Enough
� If we have:

“All men are mortal.”
“Socrates is a man.”

� Does it follow that “Socrates is mortal?”
� Can’t be represented in propositional logic. Need a

language that talks about objects, their properties, and
their relations.

� Later we’ll see how to draw inferences.

Introducing Predicate Logic
� Predicate logic uses the following new features:

� Variables: x, y, z
� Predicates: P(x), M(x)
� Quantifiers (to be covered in a few slides):

� Propositional functions are a generalization of
propositions.
� They contain variables and a predicate, e.g., P(x)
� Variables can be replaced by elements from their

domain.
Quantifiers 量词
Propositional functions 命题函数
domain 域

Propositional Functions
� Propositional functions become propositions (and have

truth values) when their variables are each replaced by a
value from the domain (or bound by a quantifier, as we will
see later).

� The statement P(x) is said to be the value of the
propositional function P at x.

� For example, let P(x) denote “x > 0” and the domain be the
integers. Then:
P(-3) is false.
P(0) is false.
P(3) is true.

� Often the domain is denoted by U. So in this example U is
the integers.

Examples of Propositional
Functions
� Let “x + y = z” be denoted by R(x, y, z) and U (for all three variables) be

the integers. Find these truth values:
R(2,-1,5)

Solution: F
R(3,4,7)

Solution: T
R(x, 3, z)

Solution: Not a Proposition
� Now let “x - y = z” be denoted by Q(x, y, z), with U as the integers.

Find these truth values:
Q(2,-1,3)

Solution: T
Q(3,4,7)

Solution: F
Q(x, 3, z)

Solution: Not a Proposition

Compound Expressions
� Connectives from propositional logic carry over to predicate

logic.
� If P(x) denotes “x > 0,” find these truth values:

P(3) ∨	P(-1)						Solution:	T
P(3) ∧	P(-1)						Solution:	F
P(3) →	P(-1)					Solution:	F
P(3) →	¬P(-1)					Solution:	T

� Expressions with variables are not propositions and therefore do
not have truth values. For example,
P(3) ∧	P(y)						
P(x) →	P(y)					

� When used with quantifiers (to be introduced next), these
expressions (propositional functions) become propositions.

Quantifiers
� We need quantifiers to express the meaning of English

words including all and some:
� “All men are Mortal.”
� “Some cats do not have fur.”

� The two most important quantifiers are:
� Universal Quantifier, “For all,” symbol: "
� Existential Quantifier, “There exists,” symbol: $

� We write as in "x P(x) and $x P(x).
� "x P(x) asserts P(x) is true for every x in the domain.
� $x P(x) asserts P(x) is true for some x in the domain.
� The quantifiers are said to bind the variable x in these

expressions.

Charles Peirce (1839-1914)

Universal Quantifier 全称量词
Existential Quantifier 存在量词

Universal Quantifier
� "x P(x) is read as “For all x, P(x)” or “For every x, P(x)”

Examples:
1) If P(x) denotes “x > 0”	and	U is	the	integers,	then	"x P(x) is

false.
2) If P(x) denotes “x > 0”	and	U is	the	positive	integers,	then					

"x P(x) is true.
3) If P(x) denotes “x is even”	and	U is	the	integers,		then	" x

P(x) is false.

Existential Quantifier
� $x P(x) is read as “For some x, P(x)”, or as “There is an

x such that P(x),” or “For at least one x, P(x).”
Examples:

1. If P(x) denotes “x > 0”	and	U is	the	integers,	then	$x P(x) is
true. It is also true if U is the positive integers.

2. If P(x) denotes “x < 0”	and	U is	the	positive	integers,		then					
$x P(x) is false.

3. If P(x) denotes “x is even”	and	U is	the	integers,		then					$x
P(x) is true.

Thinking about Quantifiers
� When the domain of discourse is finite, we can think of

quantification as looping through the elements of the domain.
� To evaluate "x P(x) loop through all x in the domain.

� If at every step P(x) is true, then "x P(x) is true.
� If at a step P(x) is false, then "x P(x) is false and the loop

terminates.
� To evaluate $x P(x) loop through all x in the domain.

� If at some step, P(x) is true, then $x P(x) is true and the loop
terminates.

� If the loop ends without finding an x for which P(x) is true, then $x
P(x) is false.

� Even if the domains are infinite, we can still think of the
quantifiers this fashion, but the loops will not terminate in some
cases.

Properties of Quantifiers
� The truth value of $x	P(x) and " x	P(x)		depend	on	both	
the	propositional	function	P(x)	and	on		the	domain	U.	

� Examples:
1. If U is the positive integers and P(x) is the statement

“x < 2”, then $x	P(x) is true, but " x	P(x)		is	false.	
2. If U is the negative integers and P(x) is the statement

“x < 2”, then both $x	P(x) and " x	P(x)		are	true.	
3. If U consists of 3, 4, and 5, and P(x) is the statement

“x > 2”, then both $x	P(x) and " x	P(x)		are	true.	But	if	
P(x) is the statement “x < 2”, then both $x	P(x) and
" x	P(x)		are	false.	

Precedence of Quantifiers
� The quantifiers " and $ have higher precedence than

all the logical operators.
� For example, "x	P(x)	∨ Q(x)		means ("x	P(x))∨ Q(x)
� "x	(P(x)	∨ Q(x))	means	something	different.
� Unfortunately,	often	people	write	"x	P(x)	∨ Q(x)		when	
they	mean	" x	(P(x)	∨ Q(x)).	

Translating from English to Logic
Example 1: Translate the following sentence into predicate

logic: “Every student in this class has taken a course in
Java.”

Solution:
First decide on the domain U.

Solution 1: If U is all students in this class, define a
propositional function J(x) denoting “x has taken a course in
Java” and translate as "x	J(x).	

Solution 2: But if U is all people, also define a propositional
function S(x) denoting “x is a student in this class” and
translate as "x	(S(x)→ J(x)).

"x	(S(x)	∧ J(x)) is	not	correct.		What	does	it	mean?

Translating from English to Logic
Example 2: Translate the following sentence into

predicate logic: “Some student in this class has taken a
course in Java.”

Solution:
First decide on the domain U.

Solution 1: If U is all students in this class, translate as
$x	J(x)

Solution 2: But if U is all people, then translate as
$x	(S(x)	∧	J(x))	

$x	(S(x)→ J(x)) is	not	correct.	What	does	it	mean?

Returning to the Socrates Example
� Introduce the propositional functions Man(x)

denoting “x is a man” and Mortal(x) denoting “x is
mortal.” Specify the domain as all people.

� The two premises are:

� The conclusion is:

� Later we will show how to prove that the conclusion
follows from the premises.

Equivalences in Predicate Logic
� Statements involving predicates and quantifiers are

logically equivalent if and only if they have the same
truth value
� for every predicate substituted into these statements

and
� for every domain of discourse used for the variables in

the expressions.
� The notation S ≡T indicates	that	S and	T are	logically	
equivalent.	

� Example:		"x ¬¬S(x)	≡"x	S(x)

Thinking about Quantifiers as
Conjunctions and Disjunctions
� If the domain is finite, a universally quantified proposition is

equivalent to a conjunction of propositions without quantifiers
and an existentially quantified proposition is equivalent to a
disjunction of propositions without quantifiers.

� If U consists of the integers 1,2, and 3:

� Even if the domains are infinite, you can still think of the
quantifiers in this fashion, but the equivalent expressions
without quantifiers will be infinitely long.

Negating Quantified Expressions
� Consider "x	J(x)

“Every student in your class has taken a course in Java.”
Here J(x) is “x has taken a course in Java” and
the domain is students in your class.

� Negating the original statement gives “It is not the case
that every student in your class has taken Java.” This
implies that “There is a student in your class who has
not taken Java.”
Symbolically ¬"x	J(x)		and	$x	¬J(x)	are	equivalent

Negating Quantified Expressions
(continued)
� Now Consider $ x	J(x)

“There is a student in this class who has taken a course in
Java.”

Where J(x) is “x has taken a course in Java.”
� Negating the original statement gives “It is not the case

that there is a student in this class who has taken Java.”
This implies that “Every student in this class has not
taken Java”
Symbolically ¬$ x	J(x)		and	" x	¬J(x)	are	equivalent

De Morgan’s Laws for Quantifiers
� The rules for negating quantifiers are:

� The reasoning in the table shows that:

� These are important. You will use these.

Translation from English to Logic
Examples:
1. “Some student in this class has visited Mexico.”

Solution: Let M(x) denote “x has visited Mexico” and
S(x) denote “x is a student in this class,” and U		be	all	
people.

$x		(S(x)	∧	M(x))
2. “Every student in this class has visited Canada or

Mexico.”
Solution: Add C(x) denoting “x has visited Canada.”

"x	(S(x)→	(M(x)∨C(x)))

Some Fun with Translating from
English into Logical Expressions
� U = {fleegles, snurds, thingamabobs}

F(x): x is a fleegle
S(x): x is a snurd
T(x): x is a thingamabob

Translate “Everything is a fleegle”

Solution: "x	F(x)

Translation (cont)
� U = {fleegles, snurds, thingamabobs}

F(x): x is a fleegle
S(x): x is a snurd
T(x): x is a thingamabob

“Nothing is a snurd.”

Solution: ¬$x	S(x)			What	is	this	equivalent	to?
Solution: "x	¬	S(x)	

Translation (cont)
� U = {fleegles, snurds, thingamabobs}

F(x): x is a fleegle
S(x): x is a snurd
T(x): x is a thingamabob

“All fleegles are snurds.”

Solution: "x	(F(x)→	S(x))

Translation (cont)
� U = {fleegles, snurds, thingamabobs}

F(x): x is a fleegle
S(x): x is a snurd
T(x): x is a thingamabob

“Some fleegles are thingamabobs.”

Solution: $x	(F(x)	∧	T(x))

Translation (cont)
� U = {fleegles, snurds, thingamabobs}

F(x): x is a fleegle
S(x): x is a snurd
T(x): x is a thingamabob

“No snurd is a thingamabob.”

Solution: ¬$x	(S(x)	∧	T(x))		What	is	this	equivalent	
to?
Solution: "x	(¬S(x)	∨	¬T(x))

Translation (cont)
� U = {fleegles, snurds, thingamabobs}

F(x): x is a fleegle
S(x): x is a snurd
T(x): x is a thingamabob

“If any fleegle is a snurd then it is also a thingamabob.”

Solution: "x	((F(x)	∧ S(x))→	T(x))

System Specification Example
� Predicate logic is used for specifying properties that systems must

satisfy.
� For example, translate into predicate logic:

� “Every mail message larger than one megabyte will be compressed.”
� “If a user is active, at least one network link will be available.”

� Decide on predicates and domains (left implicit here) for the variables:
� Let L(m, y) be “Mail message m is larger than y megabytes.”
� Let C(m) denote “Mail message m will be compressed.”
� Let A(u) represent “User u is active.”
� Let S(n, x) represent “Network link n is state x.

� Now we have:

System Specification 系统规范

Lewis Carroll Example
� The first two are called premises and the third is called the

conclusion.
1. “All lions are fierce.”
2. “Some lions do not drink coffee.”
3. “Some fierce creatures do not drink coffee.”

� Here is one way to translate these statements to predicate logic.
Let P(x), Q(x), and R(x) be the propositional functions “x is a
lion,” “x is fierce,” and “x drinks coffee,” respectively.
1. "x	(P(x)→	Q(x))
2. $x	(P(x)	∧	¬R(x))
3. $x	(Q(x)	∧	¬R(x))

� Later we will see how to prove that the conclusion follows from
the premises.

Charles Lutwidge Dodgson
(AKA Lewis Caroll)

(1832-1898)

Some Predicate Calculus
Definitions (optional)
� An assertion involving predicates and quantifiers is valid if

it is true
� for all domains
� every propositional function substituted for the predicates in the

assertion.
Example:

� An assertion involving predicates is satisfiable if it is true
� for some domains
� some propositional functions that can be substituted for the

predicates in the assertion.
Otherwise it is unsatisfiable.
Example: not valid but satisfiable
Example: unsatisfiable

valid 有效的
satisfiable可满足的
unsatisfiable不可满足的

More Predicate Calculus
Definitions (optional)
� The scope of a quantifier is the part of an assertion in

which variables are bound by the quantifier.
Example: x has wide scope

Example: x has narrow scope

Section 1.4

Section Summary
� Nested Quantifiers
� Order of Quantifiers
� Translating from Nested Quantifiers into English
� Translating Mathematical Statements into Statements

involving Nested Quantifiers.
� Translated English Sentences into Logical Expressions.
� Negating Nested Quantifiers.

Nested Quantifiers
� Nested quantifiers are often necessary to express the

meaning of sentences in English as well as important
concepts in computer science and mathematics.
Example: “Every real number has an inverse” is
"x	$y(x	+	y	=	0)	
where	the	domains	of	x	and	y	are	the	real	numbers.

� We can also think of nested propositional functions:
"x	$y(x	+	y	=	0)	can be viewed as "x	Q(x)	where Q(x)	is
$y	P(x,	y)	where P(x,	y)	is (x	+	y	=	0)	

Thinking of Nested Quantification
� Nested Loops

� To see if "x"yP (x,y)	is	true,	loop	through	the	values	of	x	:
� At	each	step,	loop	through	the	values	for	y.	
� If for some pair of x	andy,	P(x,y)	is false, then "x	"yP(x,y)	is false and both the

outer and inner loop terminate.
"x	"y	P(x,y)	is true if	the	outer	loop	ends	after	stepping	through	each	x.		

� To see if "x	$yP(x,y)	is	true,	loop	through	the	values	of	x:
� At	each	step,	loop	through	the	values	for	y.
� The	inner	loop	ends	when	a	pair	x and	y is	found	such	that	P(x,	y)	is	true.
� If	no	y	 is	found	such	that	P(x,	y)	is	true	the	outer	loop	terminates	as	"x	$yP(x,y)

has been shown to be false.
"x	$y	P(x,y)		is true if	the	outer	loop	ends	after	stepping	through	each	x.	

� If the domains of the variables are infinite, then this process can not
actually be carried out.

Order of Quantifiers
Examples:
1. Let P(x,y)	be the statement “x	+	y	=	y	+	x.” Assume

that U is the real numbers. Then "x	"yP(x,y)		and
"y	"xP(x,y)	have the same truth value.

2. Let Q(x,y)	be the statement “x	+	y	=	0.” Assume that
U is the real numbers. Then "x	$yQ(x,y)		is true, but
$y "xQ(x,y)	is false.

Questions on Order of Quantifiers
Example 1: Let U be the real numbers,
Define P(x,y) : x · y = 0
What is the truth value of the following:
1. "x"yP(x,y)

Answer: False
2. "x$yP(x,y)

Answer: True
3. $x"y P(x,y)

Answer: True
4. $x	$ y	P(x,y)

Answer: True

Questions on Order of Quantifiers
Example 2: Let U be the real numbers,
Define P(x,y) : x / y = 1
What is the truth value of the following:
1. "x"yP(x,y)

Answer: False
2. "x$yP(x,y)

Answer: False
3. $x"y P(x,y)

Answer: False
4. $x	$ y	P(x,y)

Answer: True

Quantifications of Two Variables

Statement When True? When False

P(x,y) is true for every
pair x,y.

There is a pair x, y for
which P(x,y) is false.

For every x there is a y for
which P(x,y) is true.

There is an x such that
P(x,y) is false for every y.

There is an x for which
P(x,y) is true for every y.

For every x there is a y for
which P(x,y) is false.

There is a pair x, y for
which P(x,y) is true.

P(x,y) is false for every
pair x,y

Translating Nested Quantifiers into
English
Example 1: Translate the statement

"x		(C(x)∨ $y	(C(y)	∧	F(x,	y)))
where C(x) is “x has a computer,” and F(x,y) is “x and y are

friends,” and the domain for both x and y consists of all
students in your school.
Solution: Every student in your school has a computer or
has a friend who has a computer.

Example 2: Translate the statement
$x"y"z	((F(x,	y)∧	F(x,z)	∧	(y	≠z))→¬F(y,z))

Solution: There is a student none of whose friends are
also friends with each other.

Translating Mathematical
Statements into Predicate Logic

Example : Translate “The sum of two positive integers is
always positive” into a logical expression.

Solution:
1. Rewrite the statement to make the implied quantifiers and

domains explicit:
“For every two integers, if these integers are both positive, then the

sum of these integers is positive.”
2. Introduce the variables x and y, and specify the domain, to

obtain:
“For all positive integers x and y, x + y is positive.”

3. The result is:
"x " y	((x>	0)∧	(y >	0)→	(x+	y >	0))

where	the	domain	of	both	variables	consists	of	all	integers

Translating English into Logical
Expressions Example
Example: Use quantifiers to express the statement

“There is a woman who has taken a flight on every
airline in the world.”

Solution:
1. Let P(w,f) be “w has taken f		” and Q(f,a) be “f is a

flight on a .”
2. The domain of w is all women, the domain of f is all

flights, and the domain of a is all airlines.
3. Then the statement can be expressed as:

$w "a $f (P(w,f)	∧	Q(f,a))

