
Introduction

This tutorial concerns the Boolean satisfiability or SAT problem. We are given a formula

containing binary variables that are connected by logical relations such as and . We

aim to establish whether there is any way to set these variables so that the formula evaluates to

. Algorithms that are applied to this problem are known as SAT solvers.

Tutorials

Tutorial #9: SAT Solvers I: Introduction and
applications

Nov. 10, 2020

S. Prince

OR AND

true

Contents

https://rbcborealis.com/blog/?topics=open&content-type=4
https://ca.linkedin.com/in/simon-prince-615bb9165
https://rbcborealis.com/

The tutorial is divided into three parts. In part I, we introduce Boolean logic and the SAT problem.

We discuss how to transform SAT problems into a standard form that is amenable to algorithmic

manipulation. We categorize types of SAT solvers and present two naïve algorithms. We

introduce several SAT constructions, which can be thought of as common sub-routines for SAT

problems. Finally, we present some applications; the Boolean satisfiability problem may seem

abstract, but as we shall see it has many practical uses.

In part II of the tutorial, we will dig more deeply into the internals of modern SAT solver

algorithms. In part III, we recast SAT solving in terms of message passing on factor graphs. We

also discuss satisfiability modulo theory (SMT) solvers, which extend the machinery of SAT

solvers to solve more general problems involving continuous variables.

Relevance to machine learning

The relevance of SAT solvers to machine learning is not immediately obvious. However, there are

two direct connections. First, machine learning algorithms rely on optimization. SAT can also be

considered an optimization problem and SAT solvers can find global optima without relying on

gradients. Indeed, in this tutorial, we’ll show how to fit both neural networks and decision trees

using SAT solvers.

Second, machine learning techniques are often used as components of SAT solvers; in part II of

this tutorial, we’ll discuss how reinforcement learning can be used to speed up SAT solving, and

in part III we will show that there is a close connection between factor graphs and SAT solvers

and that belief propagation algorithms can be used to solve satisfiability problems.

Boolean logic and satisfiability

In this section, we define a set of Boolean operators and show how they are combined into

Boolean logic formulae. Then we introduce the Boolean satisfiability problem.

Boolean operators

Boolean operators are standard functions that take one or more binary variables as input and

return a single binary output. Hence, they can be defined by truth tables in which we enumerate

every combination of inputs and define the output for each (figure 1). Common logical operators

include:

https://rbcborealis.com/research-blogs/tutorial-10-sat-solvers-ii-algorithms/
https://rbcborealis.com/research-blogs/tutorial-11-sat-solvers-iii-factor-graphs-and-smt-solvers/
https://rbcborealis.com/

Boolean logic formulae

A Boolean logic formula takes a set of variables , and combines them

using Boolean operators, returning or . For example:

For any combination of input variables , , we could evaluate this formula

and see if it returns or . Notice that even for this simple example with three variables it

is hard to see what the answer will be by inspection.

Boolean satisfiability and SAT solvers

​ Figure 1. Logical operators. Each of the first four operators (, , and

) takes two binary input variables and and returns either or (shown here as 1

and 0). The operator takes a single binary input returns its complement. ​

OR AND IMPLICATION
EQUIVALENCE x1 x2 true false

NOT

• The operator is written as and takes two inputs and . It returns if one or both

of the inputs are and returns otherwise.

• The operator is written as and takes two inputs and . It returns if both the

inputs are and otherwise.

• The operator is written as and evaluates whether the two inputs are

consistent with the statement ‘if then ’. The statement is only disobeyed when is

and is and so implication returns for this combination of inputs and

otherwise.

• The operator is written as and takes two inputs and . It returns

 if the two inputs are the same and returns otherwise.

• The operator is written as and takes one input. It returns if the input is

and vice-versa. We refer as the complement of .

OR ∨ x1 x2 true
true false

AND ∧ x1 x2 true
true false

IMPLICATION ⇒
x1 x2 x1 true

x2 false false true

EQUIVALENCE ⇔ x1 x2
true false

NOT ¬ true x1 false
¬x1 x1

ϕ I {xi}Ii=1 ∈ {false true}
true false

ϕ := (x1 ⇒ (¬x2 ∧ x3)) ∧ (x2 ⇔ (¬x3 ∨ x1). (1)

x1,x2,x3 ∈ {false true}
true false

https://rbcborealis.com/

The Boolean satisfiability problem asks whether there is at least one combination of binary input

variables , for which a Boolean logic formula returns . When this is the

case, we say the formula is satisfiable.

A SAT solver is an algorithm for establishing satisfiability. It takes the Boolean logic formula as

input and returns if it finds a combination of variables that can satisfy it or if it can

demonstrate that no such combination exists. In addition, it may sometimes return without an

answer if it cannot determine whether the problem is or .

Conjunctive normal form

To solve the SAT problem, we first convert the Boolean logic formula to a standard form that it is

more amenable to algorithmic manipulation. Any formula can be re-written as a conjunction of

disjunctions (i.e., the logical of statements containing relations). This is known as

conjunctive normal form. For example:

Each term in brackets is known as a clause and combines together variables and their

complements with a series of logical s. The clauses themselves are combined via

relations.

The Tseitin transformation

The Tseitin transformation converts an arbitrary logic formula to conjunctive normal form. The

approach is to i) associate new variables with sub-parts of the formula using logical equivalence

relations, (ii) to restate the formula by logically -ing these new variables together, and

finally (iii) manipulate each of the equivalence relations so that they themselves are in conjunctive

normal form.

This process is most easily understood with a concrete example. Consider the conversion of the

formula:

Step 1: We associate new binary variables with the sub-parts of the original formula using the

 operator:

xi ∈ {false true} true

SAT UNSAT

SAT UNSAT

AND OR

ϕ := (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x3). (2)

OR AND

AND

ϕ := ((x1 ∨ x2) ⇔ x3) ⇒ (¬x4). (3)

yi
EQUIVALENCE

https://rbcborealis.com/

We work from the inside out (i.e., from the deepest brackets to the least deep) and choose sub-

formulae that contain a single operator (or).

Step 2: We restate the formula in terms of these relations. The full original statement is now

represented by together with the definitions of in equations 4. So the statement

is when we combine all of these relations with logical relations. Working backwards

we get:

This is getting closer to the conjunctive normal form as it is now a conjunction (logical) of

different terms.

Step 3: We convert each of these individual terms to conjunctive normal form. In practice, there

is a recipe for each type of operator:

The first of these recipes is easy to understand. If is then the first clause is satisfied, but

the second can only be satisfied by having . If is then the second clause is satisfied,

but the first clause can only be satisfied by . Hence when is , is and when is

, is and so as required.

The remaining recipes are not obvious, but you can confirm that they are correct by writing out

the truth tables for the left and right sides of each expression and confirming that they are the

same. Applying the recipes to equation 5 we get the final expression in conjunctive normal form:

y1 ⇔ (x1 ∨ x2) y2 ⇔ (y1 ⇔ x3) y3 ⇔ ¬x4 y4 ⇔ (y2 ⇒ y3). (4)

∨, ∧, ¬,⇒ ⇔

y4 y1, y2, y3, y4
true AND

ϕ = y4 ∧ (y4 ⇔ (y2 ⇒ y3))
∧ (y3 ⇔ ¬x4)
∧ (y2 ⇔ (y1 ⇔ x3))
∧ (y1 ⇔ (x1 ∨ x2)). (5)

AND

a ⇔ (¬b) = (a ∨ b) ∧ (¬a ∨ ¬b)
a ⇔ (b ∨ c) = (a ∨ ¬b) ∧ (a ∨ ¬c) ∧ (¬a ∨ b ∨ c)
a ⇔ (b ∧ c) = (¬a ∨ b) ∧ (¬a ∨ c) ∧ (a ∨ ¬b ∨ ¬c)
a ⇔ (b ⇒ c) = (a ∨ b) ∧ (a ∨ ¬c) ∧ (¬a ∨ ¬b ∨ c)
a ⇔ (b ⇔ c) = (¬a ∨ ¬b ∨ c) ∧ (¬a ∨ b ∨ ¬c) ∧ (a ∨ ¬b ∨ ¬c) ∧ (a ∨ b ∨ c). (6)

a true
¬b a false
b a true ¬b true a

false ¬b false a ⇔ (¬b)

https://rbcborealis.com/

Literals

In the conjunctive normal form, each clause is a disjunction (logical) of variables and their

complements. For neatness, we will write the complement of a variable as , so instead of

writing:

we write:

We collectively refer to the variables and their complements as literals and so this formula

contains literals and

-clauses and -SAT

When expressed in conjunctive normal form, we can characterise the problem in terms of the

number of variables, the number of clauses and the size of those clauses. To facilitate this we

introduce the following terminology:

Establishing satisfiability

SAT solvers are algorithms that establish whether a Boolean expression is satisfiable and they

can be classified into two types. Complete algorithms guarantee to return or

ϕ:= y4 ∧ (y4 ∨ y2) ∧ (y4 ∨ ¬y3) ∧ (¬y4 ∨ ¬y2 ∨ y3)
∧ (y3 ∨ x4) ∧ (¬y3 ∨ ¬x4)
∧ (¬y2 ∨ ¬y1 ∨ x3) ∧ (¬y2 ∨ y1 ∨ ¬x3) ∧ (y2 ∨ ¬y1 ∨ ¬x3) ∧ (y2 ∨ y1 ∨ x3)
∧ (y1 ∨ ¬x1) ∧ (y1 ∨ ¬x2) ∧ (¬y1 ∨ x1 ∨ x2).

OR
¬x x–

ϕ := (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x3), (8)

ϕ := (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).–––(9)

x1,x1,x2,x2,x3––x3.–

k k

• A clause that contains kk variables is known as a kk-clause. When a clause contains only a

single variable, it is known as a unit clause.

• When all the clauses contain kk variables, we refer to a problem as kk-SAT. Using this

nomenclature, we see that equation 9 is a 3-SAT problem.

SAT UNSAT

https://rbcborealis.com/

(although they may take an impractically long time to do so). Incomplete algorithms return

or return (i.e. return without providing an answer). If they find a solution that

satisfies the expression then all is good, but if they don’t then we can draw no conclusions.

Here are two naïve algorithms that will help you understand the difference:

When a solver returns or , it also returns a certificate, which can be used to check

the result with a simpler algorithm. If the solver returns , then the certificate will be a set of

variables that obey the formula. These can obviously be checked by simply computing the

formula with them and checking that it returns . If it returns then the certificate will

usually be a complex data structure that depends on the solver.

Bad news and good news

First, the bad news. The SAT problem is proven to be NP-complete and it follows that there is no

known polynomial algorithm for establishing satisfiability in the general case. An important

exception to this statement is 2-SAT for which a polynomial algorithm is known. However, for 3-

SAT and above the problem is very difficult.

The good news is that modern SAT solvers are very efficient and can often solve problems

involving tens of thousands of variables and millions of clauses in practice. In part II of this

tutorial we will explain how these algorithms work.

Related problems to SAT

Until now we have focused on the satisfiability problem in which we try to establish if there is at

least one set of literals that makes a given statement evaluate to . We note that there are also

a number of closely related problems:

UNSAT: In the UNSAT problem we aim to show that there is no combination of literals that

satisfies the formula. This is subtly different from SAT where algorithms return as soon as they

find literals that show the formula is , but may take exponential time if they cannot find a

solution. For the UNSAT problem, the converse is true. The algorithm will return as soon as soon

SAT
UNKNOWN

• An example of a complete algorithm is exhaustive search. If there are VV variables, we

evaluate the expression with all 2V2V combinations of literals and see if any combination

returns truetrue. Obviously, this will take an impractically long time when the number of

variables are large, but nonetheless it is guaranteed to return

either SATSAT or UNSATUNSAT eventually.

• An example of an incomplete algorithm is Schöning’s random walk. This is a Monte Carlo solver

in which we repeatedly (i) randomly choose an unsatisfied clause, (ii) choose one of the

variables in this clause at random and set it to the opposite value. At each step we test if the

formula is now satisfied and if so return SATSAT. After 3V3V iterations, we

return UNKNOWNUNKNOWN if we have not found a satisfying configuration.

SAT UNSAT
SAT

true UNSAT

true

SAT

https://ieeexplore.ieee.org/document/814612
https://rbcborealis.com/

as it establishes the formula is not , but may take exponential time to show that it is

.

Model counting: In model counting (sometimes referred to as #SAT or #CSP), our goal is to count

the number of distinct sets of literals that satisfy the formula.

Max-SAT: In Max-SAT, it may be the case that a formula is but we aim to find a solution

that minimizes the number of clauses that are invalid.

Weighted Max-SAT: This is a variation of Max-SAT in which we pay a different penalty for each

clause when it is invalid. We wish to find the solution that incurs the least penalty.

For the rest of this tutorial, we’ll concentrate on the main SAT problem, but we’ll return to these

related problems in part III of this tutorial when we discuss factor graph methods.

SAT Constructions

Most of the remainder of part I of this tutorial is devoted to discussing practical applications of

satisfiability problems. Based on the discussion thus far, the reader would be forgiven for being

sceptical about how this rather abstract problem can find real-world uses. We will attempt to

convince you that it can! However, before we can do this, it will be helpful to review commonly-

used SAT constructions.

SAT constructions can be thought of as subroutines for Boolean logic expressions. A common

situation is that we have a set of variables and we want to enforce a collective

constraint on their values. In this section, we’ll discuss how to enforce the constraints that they

are all the same, that exactly one of them is , that no more than of them are true or that

exactly of them are true.

Same

To enforce the constraint that a set of variables and are either all or all we

simply take the logical of these two cases so we have:

Note that this is not in conjunctive normal form (the and s are the wrong way around)

but could be converted via the Tseitin transformation.

Exactly one

UNSAT
UNSAT

UNSAT

x1,x2,x3,…

true K

K

x1,x2 x3 true false
OR

Same[x1,x2,x3] := (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3).–––(10)

AND OR

https://rbcborealis.com/

To enforce the constraint that only one of a set of variables and is true and the other

two are false, we add two constraints. First we ensure that at least one variable is by

logically ing the variables together:

Then we add a constraint that indicates that both members of any pair of varaiables cannot be

simultaneously :

At least , Less than , Exactly

There are many standard ways to enforce the constraint that at least of a set of variables are

. We’ll present one method which is a simplified version of the sequential counter encoding.

The idea is straightforward. If we have variables and wish to test if or more

are true, we construct a matrix containing new binary variables (figures 2b and d).

The row of the table contains a count of the number of elements we have seen in .

So, if we have seen 3 variables that are in the first elements, the row will start with 3

 elements and finish with elements.

x1,x2 x3
true

OR

ϕ1 := x1 ∨ x2 ∨ x3. (11)

true

ExactlyOne[x1,x2,x3] := ϕ1 ∧ ¬(x1 ∧ x2) ∧ ¬(x1 ∧ x3) ∧ ¬(x2 ∧ x3). (12)

K K K

K

true

J x1,x2,…xJ K

J ×K rj,k
jth true x1…j

true j jth

true K − 3 false

​Figure 2. SAT construction for ‘at least ’ constraint. a) Consider a vector of length 7 with elements . We will

show how to test whether it has at least elements that are . b) We construct a matrix where

the row counts how many values we have seen up to and including the element of . This value is

clipped if we have seen more than so far. For example, the fifth row contains 3 values (here represented

as a 1) and two values (represented as a zero) indicating that there are 3 values in the first 5 elements

of . If the ‘at least ’ constraint is obeyed then the bottom right element of the table will be . Here, this is

not the case. c) A second example vector containing 6 elements. d) We construct a table to establish if

there are at least 3 elements in . Here, that constraint is satisfied as the bottom right element is .

K x xj

K = 5 true 7 × 5 R
jth true jth x

K true
false true

x K true
x 6 × 3

true x true

https://link.springer.com/chapter/10.1007/978-3-030-30446-1_7
https://link.springer.com/chapter/10.1007/11564751_73
https://rbcborealis.com/

If there are at least variables, then the bottom right variable in this table must be

and so in practice, we would add a clause stating that this bottom right element must be

 to enforce the constraint. When this element is , the solver will search for a different

solution where does have at least elements or return if it cannot find one. By the

same logic, to enforce the constraint that there are less than elements, we add a clause

stating that the bottom right hand variable is .

The table in figure 2d also shows us how to constrain the data to have exactly K values.

Here we would need to construct a table with columns. We expect the bottom right

element to be (there are not K+1 values), but the element to the left of this to be

 (there are at least K values). Hence, we can add the clause . Figure 3

provides more detail about how we add extra clauses to the SAT formula that build these tables.

Armed with these SAT constructions, we’ll now present two complementary ways of thinking

about SAT applications. The goal is to inspire the novice reader to see the applicability to their

own problems. In the next section, we’ll consider SAT in terms of constraint satisfaction problems

and in the section following that, we’ll discuss it in terms of model fitting.

K rJ,K true
(rJ,K)

true false
x K UNSAT

K –rJ,K
false

true
K + 1

false true true
true (–rJ,K+1 ∧ rJ,K)

Figure 3. SAT construction for ‘at least K’ constraint. a) Consider a data vector of length 7 with elements . b)

To test whether it has at least elements that are , we construct a matrix where the row

counts how many values we have seen up to and including the element of . c-e) Incremental

construction of the table. When we start all elements in the table are uncertain (represented by ‘?’). We

together a series of clauses that collectively constrain them to form the table. In each case, the color of the

constraint matches the color of the elements it constrains.

x xj

K = 4 true 7 × 4 R jth

true jth x
AND

https://rbcborealis.com/

Applications: constraint satisfaction

The constraint satisfaction viewpoint considers combinatorial problems where there are a very

large number of potential solutions, but most of those solutions are ruled out by some pre-

specified constraints. To make this explicit, we’ll consider the two examples of graph coloring

and scheduling.

Graph coloring

In the graph coloring problem (figure 4) we are given a graph consisting of a set of vertices and

edges. We want to associate each vertex with a color in such a way that every pair of vertices

connected by an edge have different colors. We might also want to know how many colors are

necessary to find a valid solution. Note that this maps to our description of the generic constraint

satisfaction problem; there are a large number of possible assignments of colors, but many of

these are ruled out by the constraint that neighboring colors must be different.

To encode this as a SAT problem, we’ll choose the number of colors to test. Then we create

binary variables which will be if vertex is colored with color . We then encode the

constraint that each vertex can only have exactly one color using the construction

 from equation 12. We also add the constraints to ensure that the neighbours

have different colors. Formally this means that that for every color and

neighbour of vertex .

Having set up the problem, we run the SAT solver. If it returns this means we need

more colors. If it returns with a concrete coloring, then we have an answer. We can find the

Figure 4. Graph coloring. a) We are given a graph consisting of a set of vertices and edges connecting them. We

want to color the vertices in such a way that two vertices have different colors if they are connected by an edge.

The graph coloring problem aims to establish the smallest number of colors for which this is possible and return a

satisfying assignment of colors. For this graph, it can be achieved with three colors. b) The graph coloring

problem has a practical application in coloring maps. Here each American state corresponds to a vertex and we

add an edge if two states are adjacent. It has been famously proven that all such 2D maps require a maximum of

four colors.

C

xc,v true v c

ExactlyOne[x∙,v]
xc,v ⇒ ¬xc,v′ c

v′ v

UNSAT
SAT

https://rbcborealis.com/

minimum number of colors required by using binary search over the number of colors to find the

point where the problem changes from to .

Scheduling

The graph coloring problem is a rather artificial computer science example, but many real-world

problems can similarly be expressed in terms of satisfiability. For example, consider scheduling

courses in a university. We have a number of professors, each of whom teach several different

courses. We have a number of classrooms. We have a number of possible time-slots in each

classroom. Finally, we have the students themselves, who are each signed up to a different

subset of courses. We can use the SAT machinery to decide which course will be taught in which

classroom and in what time-slot so that no clashes occur.

In practice, this is done by defining binary variables describing the known relations between the

real world quantities. For example, we might have variables indicating that student takes

course . Then we encode the relevant constraints: no teacher can teach two classes

simultaneously, no student can be in two classes simultaneously, no room can host more than

one class simultaneously, and so on. The details are left as an exercise to the reader, but the

similarity to the graph coloring problem is clear.

SAT as function fitting

A second way to think about satisfiability is in terms of function fitting. Here, there is a clear

connection to machine learning in which we fit complex functions (i.e., models) to training data.

In fact there is a simple relationship between function-fitting and constraint satisfaction; when we

fit a model, we can consider the parameters as unknown variables, and each training data/label

pair represents a constraint on the values those parameters can take. In this section, we’ll

consider fitting binary neural networks and decision trees.

Fitting binary neural networks

Binary neural networks are nets in which both the weights and activations are binary. Their

performance can be surprisingly good, and their implementation can be extremely efficient. We’ll

show how to fit a binary neural network using SAT.

Following Mezard and Mora (2008) we consider a one layer binary network with neurons. The

network takes a dimensional data example with elements and computes a

label , using the function:

SAT UNSAT

xi,j i

j

K

J x xj ∈ {−1, 1}
y ∈ {−1, 1}

https://www.mdpi.com/2079-9292/8/6/661
https://arxiv.org/abs/0803.3061
https://rbcborealis.com/

where the unknown model parameters are also binary and the function returns -1 or 1

(figure 5) based on the sign of the summed terms.

Given a training set of data/label pairs , our goal is to choose the model parameters .

We’ll force all of the training examples to be classified correctly and so each training

example/label pair can be considered a hard constraint on the parameters.

To encode these constraints, we create new variables that indicate whether the product

 is positive. This happens when either both elements are positive or both are negative, so

we can use the construction. Note that for the rest of this discussion we’ll revert

to the convention that , .

The predicted label is the sum of the elements and will be positive when more than half of the

product terms evaluate to . Likewise it will be negative if less than half are . Hence,

for the network to predict the correct output label we require

where and the vector contains the product terms .

​Figure 5. A binary neural network takes a binary data example with elements , and multiplies

each element with a learned binary parameter and sums the results. The output is also binary and

is determined by the sign of this sum.

xi J xi,j ∈ {−1, 1}
ϕj ∈ {−1, 1}

y = sign[
J

∑

j=1

ϕjxj] (13)

ϕj sign[∙]

I {xi, yi} ϕj

zi,j
ϕjxi,j

Same[ϕj,xi,j]
xi,j, yj ∈ {false true}

zi,j
zi,∙ true true

yi

(yi ∧ AtLeastK[zi]) ∨ (–yi ∧ ¬AtLeastK[zi]) (14)

K = J/2 zi zi,∙

https://rbcborealis.com/

We have one such constraint for each training example and we logically these together.

When we run the SAT solver we are asking whether it is possible to find a set of parameters for

which all of these constraints are met.

It is easy to extend this example to multi-layer networks and to allow a certain amount of training

error and we leave these extensions as exercises for the reader.

Fitting decision trees

A binary decision tree also classifies data into binary labels . Each data example

 starts at the root. It then passes to either the left or right branch of the tree by testing one of

its elements . We’ll consider binary data , and adopt the convention that

the data example passes left if is and right if is . This procedure continues,

testing a different value of at each node in the tree until we reach a leaf node at which a

binary output label is assigned.

Learning the binary decision tree can also be framed as a satisfiability problem. From a training

perspective, we would like to select the tree structure so that the training examples that reach

each leaf node have labels that are all or all and hence the training classification

performance is 100%.

We’ll develop a simplified version of the approach of Narodytska et al. (2018). Incredibly, we can

learn both the structure of the tree and which features to branch on simultaneously. When we run

the SAT solver for a given number of tree nodes, it will search over the space of all tree

structures and branching features and return if it is possible to classify all the training

examples correctly and provide a concrete example in which this is possible. By changing the

number of tree nodes, we can find the point at which this problem turns from to

and hence find the smallest possible tree that classifies the training data correctly.

We’ll describe the SAT construction in two parts. First we’ll describe how to encode the structure

of the tree as a set of logical relations and then we’ll discuss how to choose branching features

that classify the data correctly.

Tree structure: We create binary variables that indicate if each of the nodes is a leaf.

Similarly we create binary variables indicating if node is the left child of node and

 binary variables indicating if node is the right child of node . Then we build Boolean

expressions to enforce the following constraints:

AND
ϕ

xi yi ∈ {0, 1}
xi

xi,j xi,j ∈ {false true}
xi,j false xi,j true

xi,j

xi

yi true false

N

SAT

SAT UNSAT

N vn N

N 2 lm,n n m

N 2 rm,n m n

https://www.ijcai.org/Proceedings/2018/189
https://rbcborealis.com/

Any set of variables , , that obey these constraints form a valid tree, and we can find

such a configuration with a SAT solver. Two such trees are illustrated in figure 6.

vn lm,n rm,n

https://rbcborealis.com/

Classification: The second part of the construction ensures that the data examples are

classified correctly (figure 7). We introduce variables that indicate that node branches on

feature . We’ll adopt the convention that when the branching variable is we will always

branch left and when it is we will always branch right. In addition, we introduce variables

that will indicate if each leaf node classifies the data as or (their values will be

arbitrary for non-leaf nodes).

We’ll also create several book-keeping variables that are needed to set this up as a SAT problem,

but are not required to run the model once trained. We introduce ancestor variables at each

node which are if we branched left on feature at node or at any of its ancestors and

similarly if we branched right on feature at this node or any of its ancestors. Finally, we

introduce variables that indicate that training example reached leaf node . Notice that

this happens when is everywhere is (i.e., we branched left somewhere above

on these left ancestor features) and is everywhere is (i.e., we branched right

somewhere above on these right ancestor features).

xi

fn,j n

xj xj false
true ŷn

true false

alnj
n true j n

arnj j

ei,n xi n

xij false alnj true
xij true arnj true

https://rbcborealis.com/

Using these variables, we build Boolean expressions to enforce the following constraints:

Collectively, these constraints mean that all of the data must be correctly classified. When we

logically all of these constraints together, and find a solution that is we retrieve a tree

that classifies the data 100% correctly. By reducing the number of nodes until the point that the

problem becomes , we can find the most efficient tree that partitions the training data

exactly.

Conclusion

This concludes part I of this tutorial on SAT solvers. We’ve introduced the SAT problem, shown

how to convert it to conjunctive normal form and presented some standard SAT constructions.

Finally, we’ve described several different applications which we hope will inspire you to see SAT

as a viable approach to your own problems.

In the next part of this tutorial, we’ll delve into how SAT solvers actually work. In the final part,

we’ll elucidate the connections between SAT solving and factor graphs. For those readers who

still harbor reservations about the applicability of a method based purely on Boolean variables,

AND SAT

UNSAT

https://rbcborealis.com/research-blogs/tutorial-10-sat-solvers-ii-algorithms/
https://rbcborealis.com/

we’ll also consider (i) how to convert non-Boolean variables to binary form and (ii) methods to

work with them directly using SMT solvers.

Further reading

If you want to try working with SAT algorithms, then this tutorial will help you get started. For an

extremely comprehensive list of applications of satisfiability, consult SAT/SMT by example. This

may give you more inspiration for how to re-frame your problems in terms of satisfiability.

Founded by the

Royal Bank of Canada.

Research

AI Research

Open Source

Publications

Tutorials

Applications

Lumina

ATOM

NOMI

Aiden

http://www.cs.toronto.edu/~victorn/tutorials/z3_SAT_2019/index.html
https://yurichev.com/SAT_SMT.html
https://www.rbc.com/about-rbc.html
https://www.rbc.com/about-rbc.html
https://www.rbc.com/about-rbc.html
https://www.rbc.com/about-rbc.html
https://rbcborealis.com/research/
https://rbcborealis.com/research/
https://rbcborealis.com/research/
https://rbcborealis.com/ai-research/
https://rbcborealis.com/research/#open-source-tools
https://rbcborealis.com/publications/
https://rbcborealis.com/blog/?topics=open&content-type=4
https://rbcborealis.com/applications/
https://rbcborealis.com/applications/
https://rbcborealis.com/applications/
https://rbcborealis.com/applications/lumina-platform/
https://rbcborealis.com/applications/atom/
https://rbcborealis.com/applications/nomi-forecast/
https://rbcborealis.com/applications/aiden/
https://rbcborealis.com/

Community

Who we are

RESPECT AI

Partnerships

News

Blog

Careers

Join Us

ML Research Internships

Let’s SOLVE it

Fellowships

Locations

© 2025 RBC Borealis

Privacy Policy

Terms of Use

Site map

https://rbcborealis.com/community/
https://rbcborealis.com/community/
https://rbcborealis.com/community/
https://rbcborealis.com/community/#who-we-are
https://rbcborealis.com/respect-ai/
https://rbcborealis.com/partnerships/
https://rbcborealis.com/blog/?posttype=news
https://rbcborealis.com/blog/?posttype=all
https://rbcborealis.com/careers/
https://rbcborealis.com/careers/
https://rbcborealis.com/careers/
https://rbcborealis.com/careers/#open-roles
https://rbcborealis.com/internships/
https://rbcborealis.com/lets-solve-it/
https://rbcborealis.com/program/fellowships/
https://rbcborealis.com/careers/#locations
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/legal/#:~:text=RBC%20Companies%20provide%20the%20Websites,%2C%20operation%2C%20non%2Dinfringement%2C
https://rbcborealis.com/sitemap_index.xml
https://www.linkedin.com/company/rbc-borealis/
https://github.com/BorealisAI
https://www.youtube.com/channel/UCYgO8AT3rKH0nnAwu64JDyw
https://x.com/RBCBorealis
https://rbcborealis.com/

