
In part I of this tutorial, we introduced the SAT problem and discussed its applications. The SAT

problem operates on Boolean logical formulae and we discussed how to convert these to

conjunctive normal form. Here, a set of clauses are logical ed together. Each clause

logically s a set of literals (variables and their complements). For example:

Tutorials

Tutorial #10: SAT Solvers II: Algorithms

Dec. 09, 2020

S. Prince, C. Srinivasa

AND
OR

ϕ := (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).–––(1)

Cookies Settings

By using this website, you agree to
our Privacy Policy.

Contents

https://rbcborealis.com/research-blogs/tutorial-9-sat-solvers-i-introduction-and-applications/
https://rbcborealis.com/blog/?topics=open&content-type=4
https://ca.linkedin.com/in/simon-prince-615bb9165
https://www.linkedin.com/in/christophersrinivasa
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://rbcborealis.com/

where the notation represents a operation and represents a operation. The

satisfiability problem establishes whether there is any way to set the variables ,

 so that the formula evaluates to .

In this tutorial we focus exclusively on the SAT solver algorithms that are applied to this

problem. We’ll start by introducing two ways to manipulate Boolean logic formulae. We’ll then

exploit these manipulations to develop algorithms of increasing complexity. We’ll conclude with

an introduction to conflict-driven clause learning which underpins most modern SAT solvers.

Operations on Boolean formulae

SAT solvers rely on repeated algebraic manipulation of the formula that we wish to test for

satisfiability. Two such manipulations are conditioning and resolution. In this section we will

discuss each in turn.

Conditioning

In conditioning, we set a variable to a concrete value (i.e., or). When we set to

, we can simplify the formula using two rules:

For example, consider the formula:

When we set , this becomes

where the first, third and fourth clause have been removed as they are now satisfied (by rule 1)

and the term has been removed from the second clause as this term is now (by rule 2).

Similarly, when we condition by setting a variable to all clauses containing disappear, as

do any terms in the remaining clauses. Setting to in equation 2 gives:

∨ OR ∧ AND
x1,x2,x3 ∈{true

false} ϕ true

xi true false xi
true

1. All clauses containing can be removed from the formula. These clauses are now satisfied.

2. Any terms in the remaining clauses can be removed. These must now evaluate to and

hence cannot be used to satisfy their clauses.

xi

xi
–false

ϕ := (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).–––(2)

x1 = true

ϕ ∧ x1 := (x2 ∨ x3). (3)

x1
–false

false xi
–

xi x1 falseCookies Settings

By using this website, you agree to
our Privacy Policy.

https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://rbcborealis.com/

Note that variable must be either or and so:

Here we apply the conditioning operation twice and the result is to remove the variable from

the formula to yield two simpler formulae, and which are logically ed

together. Note though, that the result is not in conjunctive normal form.

Resolution

The second common operation applied to Boolean formulae is resolution. Consider two clauses

 and where and . When we resolve by , we replace these two clauses with

a single clause . This clause is known as the resolvent and contains the

remaining terms in and after and are removed.

This is best illustrated with an example. Consider the formula:

We note that is in the first clause and is in the second clause and so we can resolve with

respect to by combining the remaining terms from the first and second clause:

Note that the third clause is unaffected by this operation.

The underlying logic is as follows. If is , then for the first clause to be satisfied we must

have . However, if is , then for the second clause to be satisfied, we must have

. Since either or must be the case, it follows that we must have .

ϕ ∧ x1 := (x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3).–––(4)

xi true false

ϕ = (ϕ ∧ xi) ∨ (ϕ ∧ xi)
= (x2 ∨ x3) ∨ ((x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3)).

–
––(5)

xi
ϕ (ϕ ∧ xi) (ϕ ∧ xi)–OR

c1 c2 xi ∈ c1 xi ∈ c2
–xi

(c1 ∖ xi) ∨ (c2 ∖ xi)–

c1 c2 xi xi
–

ϕ := (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x2 ∨ x4 ∨ x5).––(6)

x2 x2
–

x2

ϕ := (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x4 ∨ x5).–(7)

x2 false
x1 ∨ x3
–x2 true x4

x2 x2
–x1 ∨ x3 ∨ x4
–

Cookies Settings

By using this website, you agree to
our Privacy Policy.

https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://rbcborealis.com/

Unit resolution

An important special case is unit resolution. Here, at least one of the clauses that we are

resolving with respect to is a unit clause (i.e., only contains a single literal). For example,

Resolution between these two clauses works as normal. However, we can go further. Since we

know that must be from the second clause, the effect of resolution here is the same as

conditioning. We can remove all clauses containing and remove all terms from the

remaining clauses. So unit resolution can be seen as either a special case of resolution or as a

conditioning operation depending how you look at it.

Unit propagation

A unit resolution operation may create more unit clauses. In this case, we can repeatedly apply

unit resolution to the expression and at each stage we eliminate one of the variables from

consideration. This procedure is known as unit propagation.

SAT solving algorithms based on resolution

We now present a series of learning algorithms that use conditioning and resolution to solve the

satisfiability problem. In this section, we will use resolution to solve the 2-SAT problem and show

why this can be solved in polynomial time. Then we’ll introduce the directional resolution

algorithm which uses resolution to solve 3-SAT problems and above, but we’ll see that this

becomes more computationally complex. In the next section, we’ll move to algorithms that

primarily exploit the conditioning algorithm to solve SAT problems.

Solving 2-SAT by unit propagation

To solve a 2-SAT problem we first condition on an arbitrarily chosen variable. This sets off a unit

propagation process (a chain of unit resolutions) in which variables are removed one-by-

one. This continues until either the formula is satisfied or we are left with a contradiction .

Worked example: This process is easiest to understand using a concrete example. Consider the

following 2-SAT problem in four variables:

ϕ := (x1 ∨ x3 ∨ x4) ∧ x4
––(8)

x4 true
x4 x4
–

xi ∧ xi
–

ϕ := (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x3 ∨ x4).–––––(9)

Cookies Settings

By using this website, you agree to
our Privacy Policy.

https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://rbcborealis.com/

We start with a single step of conditioning on an arbitrarily chosen variable. Here we’ll choose

and apply the formula . We could work directly with this cumbersome

expression, but in practice we set to and test for satisfiability. If this is not satisfiable,

then we set to and try again and if neither are satisfiable, then the expression is not

satisfiable as a whole.

Let’s work through this process explicitly. Setting to gives:

We now perform unit resolution with respect to which means removing any clauses that

contain and removing from the rest of the formula to get:

Notice that we are left with another unit clause so we know must be and we can

perform unit resolution again to yield:

This time, we have two unit clauses. We can perform unit resolution with respect to either. We’ll

choose so we now now that is and we get:

Clearly this is a contradiction, and so we conclude that the formula is not satisfiable if we set

to .

We now repeat this process with = , which gives

x1
ϕ = (ϕ ∧ x1) ∨ (ϕ ∧ x1)–

x1 true
x1 false

x1 true

ϕ ∧ x1 = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x3 ∨ x4) ∧ x1.–––––(10)

x1
x1 x1
–

ϕ ∧ x1 = x3 ∧ (x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x3 ∨ x4).–––(11)

x3
–x3 false

ϕ ∧ x1 ∧ x3 = x2 ∧ (x2 ∨ x4) ∧ x4.–––(12)

x2 x2 true

ϕ ∧ x1 ∧ x3 ∧ x2 = x4 ∧ x4 = false.––(13)

x1
true

x1 false

ϕ ∧ x1 = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x4 ∨ x3) ∧ x1
= x2 ∧ (x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x4 ∨ x3).

–––––––
–––(14)

Cookies Settings

By using this website, you agree to
our Privacy Policy.

https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://rbcborealis.com/

Once more, this leaves a unit clause , so we set to and perform unit resolution again to

get

which gives the unit clause and so we set to . Now something different happens. The

entire of the right hand side disappears. Since there are no clauses left to be satisfied, the

formula is satisfiable:

Note that the formula is satisfiable regardless of the value of (it is on neither side of the

equation) so we have found two satisfiable solutions and .

Complexity: If there are variables, there are at most rounds of unit resolution for each of the

two values of the initial conditioned variable. Each unit resolution procedure is linear in the

number of clauses so the algorithm has total complexity .

It’s possible to reach a case where the chain of unit propagation stops and we have to condition

on one of the remaining variables to start it again. However, this only occurs when subsets of the

variables have no interaction with one another and so it does not add to the complexity.

Directional resolution

Now consider what happens if we apply the unit resolution approach above to a 3-SAT

problem. When we condition on the first variable , we remove clauses that contain and

remove from the rest of the clauses. Unfortunately, this doesn’t create another unit clause (at

best it just changes a subset of the 3-clauses to 2-clauses), and so it’s not clear how to proceed.

Directional resolution is a method that uses resolution to tackle -SAT and above. The idea is to

choose an ordering of the variables and then perform all possible resolution operations with each

variable in turn before moving on. We continue until we find a contradiction or reach the end. In

the latter case, we work back in the reverse order to find the values that satisfy the expression.

Worked example: Again, this is best understood via a worked example. Consider the formula:

x2
–x2 false

ϕ ∧ x1 ∧ x2 = x3 ∧ (x4 ∨ x3)–––(15)

x3 x3 true

ϕ ∧ x1 ∧ x2 ∧ x3 = true––(16)

x4
{x1,x2,x3,x4}––{x1,x2,x3,x4}–––

V V

C O[CV]

xi xi
xi
–

3

Cookies Settings

By using this website, you agree to
our Privacy Policy.

https://www.sciencedirect.com/science/article/pii/B9781483214528501093
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://rbcborealis.com/

We sort the clauses into bins. Those containing or are put in the bin 1 and any remaining

clauses containing or are put in bin 2 and so on:

We work through these bins in turn. For each bin we perform all possible resolutions and move

the resulting generated clauses into subsequent bins. So for bin 1 we resolve the clauses

 and with respect to to get the new clause

. We add this to bin 2 as it contains a term:

We then consider bin 2 and resolve the clauses with respect to in all possible ways. In bin 2

there is one clause containing and we can resolve it against the two clauses containing

. This creates two new clauses that we simplify and add to bin 3 since they contain terms in :

Now we consider bin 3. Again, there are three clauses here and combining them with resolution

creates two new clauses. Resolving the first and second clause with respect to creates

ϕ := (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x5)∧
(x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x4 ∨ x5) ∧ (x3 ∨ x4 ∨ x5).

––––
––––(17)

x1 x1
–

x2 x2
–

x1 : (x1 ∨ x2 ∨ x4), (x1 ∨ x3 ∨ x5)
x2 : (x2 ∨ x3 ∨ x4), (x2 ∨ x4 ∨ x5)
x3 : (x3 ∨ x4 ∨ x5)
x4 :
x5 :

––––
–––
–

(18)

(x1 ∨ x2 ∨ x4)––(x1 ∨ x3 ∨ x5)––x1 (x2 ∨ x4 ∨ x3 ∨ x5)–––

x2

x1 : (x1 ∨ x2 ∨ x4), (x1 ∨ x3 ∨ x5)
x2 : (x2 ∨ x3 ∨ x4), (x2 ∨ x4 ∨ x5), (x2 ∨ x4 ∨ x3 ∨ x5)
x3 : (x3 ∨ x4 ∨ x5)
x4 :
x5 :

––––
––––––
–

(19)

x2
x2 x2
–

x3

x1 : (x1 ∨ x2 ∨ x4), (x1 ∨ x3 ∨ x5)
x2 : (x2 ∨ x3 ∨ x4), (x2 ∨ x4 ∨ x5), (x2 ∨ x4 ∨ x3 ∨ x5)
x3 : (x3 ∨ x4 ∨ x5), (x3 ∨ x4 ∨ x5), (x3 ∨ x4 ∨ x5)
x4 :
x5 :

–––––
––––––
––––

(20)

x3

Cookies Settings

By using this website, you agree to
our Privacy Policy.

https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://rbcborealis.com/

 which evaluates to since either or must always be . Similarly,

combining the first and third clause creates the clause which evaluates to

 and so we are done. At this point, we can say that the formula is as we have not

created any contradictions of the form during this resolution process

Finding the certificate: To find an example that satisfies the expression, we work

backwards, setting the bin value to or in such a way that it satisfies the clause. There

are no clauses in bin 5 and so we are free to choose either value. We’ll set to be

. Similarly, there are no clauses in bin 4 and so we will arbitrarily set to as well. After

these changes we have:

Now we consider the third bin. We substitute in the values for and and see that both

clauses evaluate to , regardless of the value of , so again, we can choose any value that

we want. We’ll set to to give:

Progressing to the second bin, we observe that the second and third clause are already satisfied

by the previous assignments, but the first clause is not since is and is

. Consequently, we must satisfy this clause by setting to :

(x4 ∨ x4 ∨ x5)–true x4 x4
–true

x4 ∨ x5 ∨ x4 ∨ x5
––

true SAT
xi ∧ xi
–

true false
x5 true

x4 true

x1 : (x1 ∨ x2 ∨ x4), (x1 ∨ x3 ∨ x5)
x2 : (x2 ∨ x3 ∨ x4), (x2 ∨ x4 ∨ x5), (x2 ∨ x4 ∨ x3 ∨ x5)
x3 : (x3 ∨ x4 ∨ x5), (x3 ∨ x4 ∨ x5)
x4 : true
x5 : true

–––––
–––––––
––

(21)

x4 x5
true x3
x3 false

x1 : (x1 ∨ x2 ∨ x4), (x1 ∨ x3 ∨ x5)
x2 : (x2 ∨ x3 ∨ x4), (x2 ∨ x4 ∨ x5), (x2 ∨ x4 ∨ x3 ∨ x5)
x3 : false
x4 : true
x5 : true

–––––
–––––––

(22)

x3 false x4 true
x2 true

x1 : (x1 ∨ x2 ∨ x4), (x1 ∨ x3 ∨ x5)
x2 : true
x3 : false
x4 : true
x5 : true

–––––

(23)

Cookies Settings

By using this website, you agree to
our Privacy Policy.

https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://rbcborealis.com/

Finally, we consider the first bin. We note that the second clause is satisfied because is

but the first clause is not and so to satisfy it, we must set to and now we have a

satisfying example.

Complexity: The directional resolution procedure works, but is not especially efficient. For large

problems, the number of clauses can expand very quickly: if there were clauses and half

contain and the other half then we could create new clauses in the first step. For a

-SAT problem, each of these clauses are larger than the original ones with size .

It is possible to improve the efficiency. Any time we generate a unit clause, we can perform unit

propagation which may eliminate many variables. Also in our example we organized the bins by

the variable index, but this was an arbitrary choice. This order can have a big effect on the total

computational cost and so careful selection can improve efficiency. However, even with these

improvements, this approach is not considered viable for large problems.

SAT solving algorithms based on conditioning

In this section, we will develop algorithms that are fundamentally centered around the

conditioning operation (although they also have unit resolution embedded). We’ll describe both

the DPLL algorithm and clause learning algorithms which underpin most modern SAT solvers. To

understand these methods, we first need to examine the connection between conditioning and

tree search.

SAT as binary search

We’ll use the running example of the following Boolean formula with clauses and

variables:

Consider conditioning on variable so that we have:

This equation makes the obvious statement that in any satisfying solution is either or

. We could first investigate the case where is . If we establish this is then we

are done, and if not we consider the case where is . Taking this one step further, we

could condition each of these two cases on to get:

x3 false
x1 true

C

x1 x1
–C2/4 K

2(K − 1)

C = 7 V = 4

ϕ := (x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4)∧
(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3),

––––
––––––(24)

x1

ϕ = (ϕ ∧ x1) ∨ (ϕ ∧ x1).–(25)

x1 true
false x1 false SAT

x1 true
x2

Cookies Settings

By using this website, you agree to
our Privacy Policy.

https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://rbcborealis.com/

and now we could consider each of the four combinations and

in turn, terminating when we find a solution that is .

One way to visualise this process is as searching through a binary tree (figure 1). At each node of

the tree we branch on one of the variables. When we reach a leaf, we have known values for

each variable and we can just check if the solution is .

This example was deliberately constructed to be pathological in that the first 14 combinations (or

equivalently leaves of the tree) all make the formula evaluate to . These are signified in the

plot by red crosses. We number the clauses:

ϕ = ((ϕ ∧ x1) ∧ x2) ∨ ((ϕ ∧ x1) ∧ x2) ∨ ((ϕ ∧ x1) ∧ x2) ∨ ((ϕ ∧ x1) ∧ x2).–––––(26)

{x1x2}, {x1x2}, {x1x2}––––{x1x2}
SAT

SAT

Figure 1. SAT as binary search. At each node of the search tree we condition on a variable, splitting into a left sub-

tree in which this variable is set to and a right sub-tree in which it is set to . There is one level in the tree

for each variable so that at each leaf all the variables are set and we can test if the formula is satisfied. For the

example in equation 24, the formula evaluates to for the first 14 leaves and the individual clauses that are

violated are indicated in grey at each leaf. The last two leaves are both satisfying solutions. In practice, we would

stop searching when we found the first satisfying solution and so we would only need to test 15 leaves in this

example.

false true

false

false

Cookies Settings

By using this website, you agree to
our Privacy Policy.

https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://rbcborealis.com/

and for each leaf of the tree in figure 1, the clauses that were contradicted are indicated in

grey. In this case, both of the last two combinations (leaves) satisfy the formula, and once we

find the first one (we can return SAT.

Note, we have not yet obviously made the algorithm more efficient. We might still have to search

all combinations of variables to establish satisfiability or lack thereof. However, viewing SAT

solving as tree search is the foundation that supports more efficient algorithms.

Efficient binary search

We can immediately improve the efficiency of the binary search method by some simple

bookkeeping. As we pass through the tree we keep track of which clauses are satisfied and

which are not. As soon as we find one that is not satisfied, we do not need to explore further and

we can backtrack. Similarly, if we find a situation where all of the clauses are already satisfied

before we reach a leaf then we can return without exploring further. This means that the

variables below this point can take any value.

In our worked example, when we pass down the first branch and set to and to

we have already contradicted clause 1 which was , and so there is no reason to

proceed further. Continuing in this way we only need to search a subset of the full tree (figure

2). We find the first satisfying solution when , , and need not continue

to the leaf. As we saw from the full tree in figure 1, the setting of is immaterial.

1 : (x1 ∨ x2)
2 : (x1 ∨ x2 ∨ x3 ∨ x4)
3 : (x1 ∨ x3 ∨ x4)
4 : (x1 ∨ x2 ∨ x3)
5 : (x1 ∨ x2 ∨ x4)
6 : (x1 ∨ x3 ∨ x4)
7 : (x2 ∨ x3)

––
––
––
––
–
–(27)

x1,x2,x3,x4)–

2V

SAT

x1 false x2 false
(x1 ∨ x2)

x1,x2,x3 =true true true
x4

Cookies Settings

By using this website, you agree to
our Privacy Policy.

https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://rbcborealis.com/

DPLL

We can also consider the tree search from an algebraic point of view. Each time we make a

decision at a node in the tree, we are conditioning on a given variable. So when we set to

, the resulting formula is

where we have used the usual recipe of removing all clauses containing and removing the

term from the remaining clauses.

The Davis–Putnam–Logemann-Loveland (DPLL) algorithm takes tree search one step further, by

embedding unit propagation into the search algorithm (figure 3). For example, when we condition

on and yield the new expression in equation 28, we generate the unit clause . We can

perform unit resolution using to get:

Figure 2. Efficient binary search. With some simple bookkeeping, tree search can be made much more efficient. If

we track the status of each clause then we can backtrack as soon as one of the clauses is violated. Again, the

index of the violated clause is shown in grey. Similarly, when we have satisfied all of the clauses we can return

 even though we have not yet reached a leaf. The variables below this can be set to any value.SAT

x1
false

ϕ ∧ x1 := x2 ∧ (x2 ∨ x3 ∨ x4) ∧ (x3 ∨ x4) ∧ (x2 ∨ x3),––––––(28)

x1
–

x1

x1
–x2

x2

ϕ ∧ x1 ∧ x2 := (x3 ∨ x4) ∧ (x3 ∨ x4) ∧ x3,––––(29)

Cookies Settings

By using this website, you agree to
our Privacy Policy.

https://archive.org/details/machineprogramfo00davi/mode/2up
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://rbcborealis.com/

which creates another unit clause . Applying unit resolution again we yield the contradiction

 and need proceed no further.

To summarize, the DPLL algorithm consists of tree search, where we perform unit propagation

whenever unit clauses are produced. Since unit resolution can be done in linear time, this is much

more efficient than the tree search that it replaces.

Note that in our worked example, the unit propagation process always generated a contradiction

or a solution. However, this is not necessarily the case in a larger problem. After unit

resolution there will usually be non-unit clauses left containing the remaining variables have

neither been conditioned on, nor eliminated using unit resolution. At this point, we condition on

the next available variable and continue down the tree, performing unit resolution when we can

(figure 4).

x3
x4 ∧ x4
–

​Figure 3. DPLL algorithm. By performing unit propagation where possible, we can eliminate many variables very

efficiently. In this case, once we condition on , this creates a unit clause in , which starts a chain of unit

resolution operations that establishes a contradiction. Similar effects happen at other points in the tree.

x1
–x2

SAT

Cookies Settings

By using this website, you agree to
our Privacy Policy.

https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://rbcborealis.com/

Conflict Driven Clause learning

The DPLL algorithm makes SAT solving by tree search much more efficient, but there can still be

considerable wasted computation. Consider the case where we have set to and then set

 to (figure 5). However, imagine that there are clauses that mean that when is ,

there is no way to set the variables and in a valid way. For example, the following

combination of clauses will achieve this:

As we work through the sub-tree in the blue region in figure 5, we duly establish that there is no

possible solution.

As we search through the tree, we will eventually come to another place where we set to

and now we must work through exactly the same calculations again to establish that there is no

valid solution (yellow region in figure 5). In a large problem this may happen many times.

Figure 4. DPLL algorithm in practice. In a real problem the DPLL algorithm will alternate between conditioning on

variables and performing unit resolution. The effect of this is that we condition on different variables in different

paths of the tree.

x1 false
x2 false x2 false

x3 x4

(x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4).––––(30)

x2 false

Cookies Settings

By using this website, you agree to
our Privacy Policy.

https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://rbcborealis.com/

Conflict-driven clause learning aims to reduce this redundancy. When a conflict occurs, the

cause is found and we add a new clause to the original statement that prevents exploration of

redundant sub-trees. For example, in this simple case, we could add the clause which would

prevent exploration of trees where is .

Unfortunately, the causes of a conflict are usually more complex than a single variable. To find

the combinations of variables that are ultimately responsible for the conflict, we build a structure

called an implication graph as we search through the tree.

Figure 6a provides a concrete example of a SAT problem where there are 11 clauses and 10

variables. Figure 6b illustrates the situation where we are mid-way through the DPLL search in

which we have interleaved processes of conditioning (blue shaded areas) and unit resolution

(yellow shaded areas). We have just established a conflict at clause 11 (at the blue arrow) which

cannot be satisfied when we set to .

Figure 5. Motivation for conflict-driven clause learning. Consider the case where setting to inevitably

results in a conflict where there is no way to set and . Without taking action, we will have to repeat the

computations to find this conflict in every sub-tree where is (blue and yellow rectangles). When conflict-

driven clause learning algorithms find a conflict in a sub-tree, they add a new clause to the original expression

that prevents redundant exploration of sub-trees.

x2 false
x3 x4

x2 false

(x2)
x2 false

x5 true

Cookies Settings

By using this website, you agree to
our Privacy Policy.

https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://rbcborealis.com/

Figure 6c is the implication graph associated with this point in the search, which contains all of

the variables that we have established so far. The literals that we conditioned on

are depicted with blue vertices and the literals and that resulted from unit

propagation are shown as yellow vertices. Each edge depicts a contribution to the unit resolution

process. For example, the edge between and represents the fact that when is set to

, we must set to . This is due to clause 1 and the edge is accordingly labelled with

. Similarly, we can see that has become by clause because previously in the search

process and were both set to .

You can see from this implication graph exactly how the conflict happened. When we condition

on , clause implied that must be given that and were both , but clause

implied that must be given that and were both . So, one interpretation is that

the conflict is inevitable given states and that were inputs to these contradictory

clauses.

However, this is not the only interpretation. For example, if is one of the proximal causes, then

this was only set to because we previously set and to . So maybe we should

Figure 6. Implication graphs. a) A SAT problem with 11 clauses in 10 variables. b) We are mid-way though the DPLL

process (at the blue arrow) and have just found a conflict at clause 11. c) The implication graph representing the

current state. Each vertex corresponds to a variable (blue if conditioned, yellow if inferred by unit resolution). The

incoming edges to yellow vertices correspond to the variables that caused the vertex variable to be inferred and

are labelled with the relevant clause. So, for example, is set to by clause because is and is

. The conflict results when setting variable implies both and it’s complement .

x6 false c2 x1 false x2
true x5 x7 x7
–

x1,x2,x3,x5–

x4,x6,x10,x9,x7–x7
–

x1
–x4 x1

false x4 true c1
x10 true c3

x1 x6 false

x5 c6 x7 true x2 x5 true c11
x7 false x5 x10 true

x2,x5 x10

x10
true x1 x6 false

Cookies Settings

By using this website, you agree to
our Privacy Policy.

https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://rbcborealis.com/

attribute the contradiction not to variables but to variables . We can use

the implication graph to find alternative explanations. Any cut of the graph that separates the

conditioning (blue) variables from the conflict defines an explanation (figure 7). The explanatory

variables are the source vertices of the edges that were cut.

Having established a cause, we must now derive a new clause that prevents the SAT solver from

exploring similar dead-ends in the future. If the case was attributed to , then we would

add the clause to prevent this combination happening. We continue exploring the

tree, by jumping back up the tree structure to a sensible point and resuming with this new

constraint.

Machine leaning powered CDCL

The previous discussion outlined the main ideas of conflict-driven clause learning algorithms, but

there are many additional choices to be made in a modern system. For example, we must decide

the order of variables to condition on. In our examples, we have done this in numerical order, but

this choice was arbitrary and there is no particular reason to evaluate them in the same order as

we go down different branches in the tree. Much work is devoted to developing heuristics to

making this choice. For example, we might prioritize variables that are in short clauses, with the

x2,x5,x10 x2,x5,x6,x1––

​Figure 7. Cutting the implication graph to find the causes of a conflict. Any cut that separates the conditioned

nodes (in blue) from the conflict can be interpreted as a possible cause. a) In this case, the cause of the conflict is

attributed to variables , since the edges from these variables are cut. b) In this second case, the cause

is attributed to variables .

x2,x5,x10
x1,x2,x5–

x1,x2,x5–

(x1 ∨ x2 ∨ x5)––

Cookies Settings

By using this website, you agree to
our Privacy Policy.

https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://rbcborealis.com/

goal of triggering unit propagation earlier. Alternatively, we might prioritize variables that are in

lots of clauses as this will simplify the expression a great deal.

There are also many other decisions to make. In CDCL, we must choose which of many potential

explanations for a conflict is superior and decide exactly where we should jump back to in the

tree. Some solvers periodically restart the solution process to avoid wasting the available

computation time fruitlessly searching a single branch, and we must decide when exactly to

perform these restarts. One approach to making these decisions is to use machine learning to

guide the choices.

For example, Liang et al., (2016) developed uses a reward function to choose the order in which

variables in a CDCL solver are considered. A reward function is defined for each variable :

Here keeps track of the total number of conflicts the solver has encountered so

far whereas keeps track of the last time variable was involved in a conflict.

From this we can see that a variable which was recently involved in a conflict would get a high

reward. This reward is then incorporated into a score function:

At any iteration where a new variable must be selected for conditioning, the variable with the

highest score is picked, provided that it is not currently already conditioned on. This is known as

the conflict history branching heuristic.

In the above formulation, the terms appearing in the reward will always be known and can hence

be computed exactly. However, Liang et al., (2016) also dealt with a case where the reward

function is defined such that the terms appearing in it have associated uncertainty. This new

reward definition improves the branching heuristic and the authors show how tools from a Multi-

Armed Bandit framework in RL can be used to estimate the uncertainty and further improve

performance.

In further work Liang et al., 2017 the same authors show how gradient based methods can be

used to optimize another branching heuristic, one based on how many learnt clauses can be

obtained from each decision. Other examples of machine learning in the SAT community

include Nejati et al., (2017) where reinforcement learning is used to decide when to restart the

solver.

r[i] xi

r[i] ∝
1

numConflicts− lastConflict[i])
(31)

numConflicts

lastConflict[i] xi

Q[i]⟵ (1 − α)Q[i] + αr[i] (32)

Cookies Settings

By using this website, you agree to
our Privacy Policy.

https://cs.uwaterloo.ca/~ppoupart/publications/sat/sat-erwa.pdf
https://cs.uwaterloo.ca/~ppoupart/publications/sat/sat-erwa.pdf
https://cs.uwaterloo.ca/~ppoupart/publications/sat/sat-erwa.pdf
https://cs.uwaterloo.ca/~ppoupart/publications/sat/learning-rate-branching-heuristic-SAT.pdf
https://cs.uwaterloo.ca/~ppoupart/publications/sat/learning-rate-branching-heuristic-SAT.pdf
https://cs.uwaterloo.ca/~ppoupart/publications/sat/learning-rate-branching-heuristic-SAT.pdf
https://link.springer.com/chapter/10.1007/978-3-319-66263-3_8
https://link.springer.com/chapter/10.1007/978-3-319-66263-3_8
https://link.springer.com/chapter/10.1007/978-3-319-66263-3_8
https://link.springer.com/chapter/10.1007/978-3-319-72308-2_8
https://link.springer.com/chapter/10.1007/978-3-319-72308-2_8
https://link.springer.com/chapter/10.1007/978-3-319-72308-2_8
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://rbcborealis.com/

Discussion

In this blog, we introduced resolution and conditioning operations. We then developed a series of

algorithms based on these operations. We started with using resolution (via unit propagation) to

efficiently solve 2-SAT and then investigated the directional resolution for 3-SAT and above. We

re-framed the SAT solving problem as tree search where conditioning is used at each branch in

the tree. This led to the DPLL and CDCL algorithms.

For further information about SAT solving including the DPLL and CDCL algorithms, consult the

Handbook of Satisfiability. Most chapters are available on the internet if you search for their titles

individually. A second useful resource is Donald Knuth’s Facsicle 6.

In part III of this article, we’ll investigate a completely different approach to SAT solving that relies

on belief propagation in factor graphs. Finally, we’ll show how the machinery of SAT solving can

be extended to continuous variables by introducing satisfiability module theory (SMT) solvers.

Founded by the

Royal Bank of Canada.

Research

AI Research

Applications

Lumina

Work with Us!

Impressed by the work of the team? RBC Borealis is looking to hire for various roles across

different teams. Visit our career page now and discover opportunities to join similar impactful

projects!

Careers at RBC Borealis

Cookies Settings

By using this website, you agree to
our Privacy Policy.

https://www.iospress.nl/book/handbook-of-satisfiability/
https://dl.acm.org/doi/book/10.5555/2898950
https://rbcborealis.com/research-blogs/tutorial-11-sat-solvers-iii-factor-graphs-and-smt-solvers/
https://www.rbc.com/about-rbc.html
https://www.rbc.com/about-rbc.html
https://www.rbc.com/about-rbc.html
https://www.rbc.com/about-rbc.html
https://rbcborealis.com/research/
https://rbcborealis.com/research/
https://rbcborealis.com/research/
https://rbcborealis.com/ai-research/
https://rbcborealis.com/applications/
https://rbcborealis.com/applications/
https://rbcborealis.com/applications/
https://rbcborealis.com/applications/lumina-platform/
https://rbcborealis.com/join-us/
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://rbcborealis.com/

Open Source

Publications

Tutorials

ATOM

NOMI

Aiden

Community

Who we are

RESPECT AI

Partnerships

News

Blog

Careers

Join Us

ML Research Internships

Let’s SOLVE it

Fellowships

Locations

© 2025 RBC Borealis

Privacy Policy

Terms of Use

Site map

Cookies Settings

By using this website, you agree to
our Privacy Policy.

https://rbcborealis.com/research/#open-source-tools
https://rbcborealis.com/publications/
https://rbcborealis.com/blog/?topics=open&content-type=4
https://rbcborealis.com/applications/atom/
https://rbcborealis.com/applications/nomi-forecast/
https://rbcborealis.com/applications/aiden/
https://rbcborealis.com/community/
https://rbcborealis.com/community/
https://rbcborealis.com/community/
https://rbcborealis.com/community/#who-we-are
https://rbcborealis.com/respect-ai/
https://rbcborealis.com/partnerships/
https://rbcborealis.com/blog/?posttype=news
https://rbcborealis.com/blog/?posttype=all
https://rbcborealis.com/careers/
https://rbcborealis.com/careers/
https://rbcborealis.com/careers/
https://rbcborealis.com/careers/#open-roles
https://rbcborealis.com/internships/
https://rbcborealis.com/lets-solve-it/
https://rbcborealis.com/program/fellowships/
https://rbcborealis.com/careers/#locations
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/legal/#:~:text=RBC%20Companies%20provide%20the%20Websites,%2C%20operation%2C%20non%2Dinfringement%2C
https://rbcborealis.com/sitemap_index.xml
https://www.linkedin.com/company/rbc-borealis/
https://github.com/BorealisAI
https://www.youtube.com/channel/UCYgO8AT3rKH0nnAwu64JDyw
https://x.com/RBCBorealis
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://www.rbc.com/privacysecurity/ca/index.html
https://rbcborealis.com/

